; Fix recent additions to the manuals

* doc/lispref/objects.texi (Type Specifiers):
* doc/lispref/functions.texi (Declare Form):
* doc/emacs/help.texi (Name Help): Fix wording and markup.
(Bug#73626)
This commit is contained in:
Eli Zaretskii 2024-11-21 17:47:22 +02:00
parent c818c5bbaf
commit c50ce03afc
3 changed files with 30 additions and 26 deletions

View file

@ -326,8 +326,8 @@ yet further information is often reachable by clicking or typing
The function type, if known, is expressed with a @dfn{function type
specifier} (@pxref{Type Specifiers,,,elisp, The Emacs Lisp Reference
Manual}), it will be specified if the type was manually declared by the
programmer or inferred by the compiler. Note that function type
Manual}), it will be specified if the type was manually declared by a
Lisp program or inferred by the compiler. Note that function type
inference works only when native compilation is enabled (@pxref{native
compilation,,, elisp, The Emacs Lisp Reference Manual}).

View file

@ -2734,7 +2734,7 @@ generation and for deriving more precisely the type of other functions
without type declaration.
@var{type} is a @dfn{type specifier} (@pxref{Type Specifiers}) in the
form @w{@code{(function (@var{arg-1-type} ... @var{arg-n-type})
form @w{@code{(function (@var{arg-1-type} @dots{} @var{arg-n-type})
RETURN-TYPE)}}. Argument types can be interleaved with symbols
@code{&optional} and @code{&rest} to match the function's arguments
(@pxref{Argument List}).

View file

@ -1506,13 +1506,13 @@ An example of a type descriptor is any instance of
A type specifier is an expression that denotes a type. A type
represents a set of possible values. Type specifiers can be classified
in primitives and compounds.
into primitive types and compound types.
Type specifiers are in use for several purposes including: documenting
Type specifiers are in use for several purposes, including: documenting
function interfaces through declaration (@pxref{Declare Form}),
specifying structure slot values (@pxref{Structures,,, cl, Common Lisp
Extensions for GNU Emacs Lisp}), type-checking through @code{cl-the}
(@pxref{Declarations,,, cl, Common Lisp Extensions for GNU Emacs Lisp})
(@pxref{Declarations,,, cl, Common Lisp Extensions for GNU Emacs Lisp}),
and others.
@table @asis
@ -1521,7 +1521,7 @@ Primitive types specifiers are the basic types (i.e.@: not composed by other
type specifiers).
Built-in primitive types (like @code{integer}, @code{float},
@code{string} etc) are listed in @ref{Type Hierarchy}.
@code{string} etc.@:) are listed in @ref{Type Hierarchy}.
@item Compound type specifiers
Compound types serve the purpose of defining more complex or precise
@ -1530,55 +1530,59 @@ type specifications by combining or modifying simpler types.
List of compound type specifiers:
@table @code
@item (or @var{type-1} .. @var{type-n})
@item (or @var{type-1} @dots{} @var{type-n})
The @code{or} type specifier describes a type that satisfies at least
one of the given types.
@item (and @var{type-1} .. @var{type-n})
@item (and @var{type-1} @dots{} @var{type-n})
Similarly the @code{and} type specifier describes a type that satisfies
all the given types.
all of the given types.
@item (not @var{type})
The @code{not} type specifier defines any type except the specified one.
@item (member @var{value-1} .. @var{value-n})
@item (member @var{value-1} @dots{} @var{value-n})
The @code{member} type specifier allows to specify a type that includes
only the explicitly listed values.
@item (function (@var{arg-1-type} ... @var{arg-n-type}) @var{return-type})
@item (function (@var{arg-1-type} @dots{} @var{arg-n-type}) @var{return-type})
The @code{function} type specifier is used to describe the argument
types and return type of a function. Argument types can be interleaved
types and the return type of a function. Argument types can be interleaved
with symbols @code{&optional} and @code{&rest} to match the function's
arguments (@pxref{Argument List}).
The following is to represent a function with: a first parameter of type
@code{symbol}, a second optional parameter of type @code{float} and
returning an @code{integer}:
The type specifier represent a function whose first parameter is of type
@code{symbol}, the second optional parameter is of type @code{float},
and which returns an @code{integer}:
@example
(function (symbol &optional float) integer)
(function (symbol &optional float) integer)
@end example
@item (integer @var{lower-bound} @var{upper-bound})
@code{integer} can be used as well as a compound type specifier to
define a subset of integers by specifying a range. This allows to
precisely control which integers are valid for a given type.
The @code{integer} type specifier can also be used as a compound type
specifier to define a subset of integer values by specifying a range.
This allows to precisely control which integers are valid for a given
type.
@var{lower-bound} is the minimum integer value in the range and
@var{upper-bound} the maximum. It is possible to use @code{*} to
indicate no lower or uper limit.
@var{upper-bound} the maximum. You can use @code{*} instead of the
lower or upper bound to indicate no limit.
The following represents all integers from -10 to 10:
The following represents all integers from -10 to 10.
@example
(integer -10 10)
@end example
The following represents 10.
The following represents the single value of 10:
@example
(integer 10 10)
@end example
The following represents all integers from negative infinity to 10.
The following represents all the integers from negative infinity to 10:
@example
(integer * 10)
@end example