Use defstruct rather than macros.

Change naming to use "avl-tree--" for internal functions.
This commit is contained in:
Stefan Monnier 2007-08-31 20:15:34 +00:00
parent e35a28cda6
commit afdd184ca8
2 changed files with 233 additions and 290 deletions

View file

@ -1,3 +1,8 @@
2007-08-31 Stefan Monnier <monnier@iro.umontreal.ca>
* emacs-lisp/avl-tree.el: Use defstruct rather than macros.
Change naming to use "avl-tree--" for internal functions.
2007-08-31 Dan Nicolaescu <dann@ics.uci.edu>
* term/x-win.el (x-menu-bar-open): Delete duplicated function from

View file

@ -28,345 +28,306 @@
;;; Commentary:
;; An AVL tree is a nearly-perfect balanced binary tree. A tree
;; consists of two cons cells, the first one holding the tag
;; 'AVL-TREE in the car cell, and the second one having the tree
;; in the car and the compare function in the cdr cell. The tree has
;; a dummy node as its root with the real tree in the left pointer.
;; An AVL tree is a nearly-perfect balanced binary tree. A tree consists of
;; two elements, the root node and the compare function. The actual tree
;; has a dummy node as its root with the real root in the left pointer.
;;
;; Each node of the tree consists of one data element, one left
;; sub-tree and one right sub-tree. Each node also has a balance
;; count, which is the difference in depth of the left and right
;; sub-trees.
;;
;; The "public" functions (prefixed with "avl-tree") are:
;; -create, -p, -compare-function, -empty, -enter, -delete,
;; -member, -map, -first, -last, -copy, -flatten, -size, -clear.
;; The functions with names of the form "avl-tree--" are intended for
;; internal use only.
;;; Code:
;;; ================================================================
;;; Functions and macros handling an AVL tree node.
(eval-when-compile (require 'cl))
(defmacro avl-tree-node-create (left right data balance)
;; Create and return an avl-tree node.
`(vector ,left ,right ,data ,balance))
;; ================================================================
;;; Functions and macros handling an AVL tree node.
(defmacro avl-tree-node-left (node)
;; Return the left pointer of NODE.
`(aref ,node 0))
(defstruct (avl-tree--node
;; We force a representation without tag so it matches the
;; pre-defstruct representation. Also we use the underlying
;; representation in the implementation of avl-tree--node-branch.
(:type vector)
(:constructor nil)
(:constructor avl-tree--node-create (left right data balance))
(:copier nil))
left right data balance)
(defmacro avl-tree-node-right (node)
;; Return the right pointer of NODE.
`(aref ,node 1))
(defmacro avl-tree-node-data (node)
;; Return the data of NODE.
`(aref ,node 2))
(defmacro avl-tree-node-set-left (node newleft)
;; Set the left pointer of NODE to NEWLEFT.
`(aset ,node 0 ,newleft))
(defmacro avl-tree-node-set-right (node newright)
;; Set the right pointer of NODE to NEWRIGHT.
`(aset ,node 1 ,newright))
(defmacro avl-tree-node-set-data (node newdata)
;; Set the data of NODE to NEWDATA.
`(aset ,node 2 ,newdata))
(defmacro avl-tree-node-branch (node branch)
(defalias 'avl-tree--node-branch 'aref
;; This implementation is efficient but breaks the defstruct abstraction.
;; An alternative could be
;; (funcall (aref [avl-tree-left avl-tree-right avl-tree-data] branch) node)
"Get value of a branch of a node.
NODE is the node, and BRANCH is the branch.
0 for left pointer, 1 for right pointer and 2 for the data.\""
`(aref ,node ,branch))
(defmacro avl-tree-node-set-branch (node branch newval)
"Set value of a branch of a node.
NODE is the node, and BRANCH is the branch.
0 for left pointer, 1 for the right pointer and 2 for the data.
NEWVAL is new value of the branch.\""
`(aset ,node ,branch ,newval))
(defmacro avl-tree-node-balance (node)
;; Return the balance field of a node.
`(aref ,node 3))
(defmacro avl-tree-node-set-balance (node newbal)
;; Set the balance field of a node.
`(aset ,node 3 ,newbal))
0 for left pointer, 1 for right pointer and 2 for the data.\"
\(fn node branch)")
;; The funcall/aref trick doesn't work for the setf method, unless we try
;; and access the underlying setter function, but this wouldn't be
;; portable either.
(defsetf avl-tree--node-branch aset)
;;; ================================================================
;;; Internal functions for use in the AVL tree package
;; ================================================================
;;; Internal functions for use in the AVL tree package
(defmacro avl-tree-root (tree)
(defstruct (avl-tree-
;; A tagged list is the pre-defstruct representation.
;; (:type list)
:named
(:constructor nil)
(:constructor avl-tree-create (cmpfun))
(:predicate avl-tree-p)
(:copier nil))
(dummyroot (avl-tree--node-create nil nil nil 0))
cmpfun)
(defmacro avl-tree--root (tree)
;; Return the root node for an avl-tree. INTERNAL USE ONLY.
`(avl-tree-node-left (car (cdr ,tree))))
(defmacro avl-tree-dummyroot (tree)
;; Return the dummy node of an avl-tree. INTERNAL USE ONLY.
`(car (cdr ,tree)))
(defmacro avl-tree-cmpfun (tree)
;; Return the compare function of AVL tree TREE. INTERNAL USE ONLY.
`(cdr (cdr ,tree)))
`(avl-tree--node-left (avl-tree--dummyroot tree)))
(defsetf avl-tree--root (tree) (node)
`(setf (avl-tree--node-left (avl-tree--dummyroot ,tree)) ,node))
;; ----------------------------------------------------------------
;; Deleting data
(defun avl-tree-del-balance1 (node branch)
(defun avl-tree--del-balance1 (node branch)
;; Rebalance a tree and return t if the height of the tree has shrunk.
(let ((br (avl-tree-node-branch node branch))
(let ((br (avl-tree--node-branch node branch))
p1 b1 p2 b2 result)
(cond
((< (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
((< (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) 0)
t)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br +1)
((= (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) +1)
nil)
(t
;; Rebalance.
(setq p1 (avl-tree-node-right br)
b1 (avl-tree-node-balance p1))
(setq p1 (avl-tree--node-right br)
b1 (avl-tree--node-balance p1))
(if (>= b1 0)
;; Single RR rotation.
(progn
(avl-tree-node-set-right br (avl-tree-node-left p1))
(avl-tree-node-set-left p1 br)
(setf (avl-tree--node-right br) (avl-tree--node-left p1))
(setf (avl-tree--node-left p1) br)
(if (= 0 b1)
(progn
(avl-tree-node-set-balance br +1)
(avl-tree-node-set-balance p1 -1)
(setf (avl-tree--node-balance br) +1)
(setf (avl-tree--node-balance p1) -1)
(setq result nil))
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-balance p1 0)
(setf (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance p1) 0)
(setq result t))
(avl-tree-node-set-branch node branch p1)
(setf (avl-tree--node-branch node branch) p1)
result)
;; Double RL rotation.
(setq p2 (avl-tree-node-left p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-left p1 (avl-tree-node-right p2))
(avl-tree-node-set-right p2 p1)
(avl-tree-node-set-right br (avl-tree-node-left p2))
(avl-tree-node-set-left p2 br)
(if (> b2 0)
(avl-tree-node-set-balance br -1)
(avl-tree-node-set-balance br 0))
(if (< b2 0)
(avl-tree-node-set-balance p1 +1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2)
(avl-tree-node-set-balance p2 0)
(setq p2 (avl-tree--node-left p1)
b2 (avl-tree--node-balance p2))
(setf (avl-tree--node-left p1) (avl-tree--node-right p2))
(setf (avl-tree--node-right p2) p1)
(setf (avl-tree--node-right br) (avl-tree--node-left p2))
(setf (avl-tree--node-left p2) br)
(setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
(setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
(setf (avl-tree--node-branch node branch) p2)
(setf (avl-tree--node-balance p2) 0)
t)))))
(defun avl-tree-del-balance2 (node branch)
(let ((br (avl-tree-node-branch node branch))
(defun avl-tree--del-balance2 (node branch)
(let ((br (avl-tree--node-branch node branch))
p1 b1 p2 b2 result)
(cond
((> (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
((> (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) 0)
t)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br -1)
((= (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) -1)
nil)
(t
;; Rebalance.
(setq p1 (avl-tree-node-left br)
b1 (avl-tree-node-balance p1))
(setq p1 (avl-tree--node-left br)
b1 (avl-tree--node-balance p1))
(if (<= b1 0)
;; Single LL rotation.
(progn
(avl-tree-node-set-left br (avl-tree-node-right p1))
(avl-tree-node-set-right p1 br)
(setf (avl-tree--node-left br) (avl-tree--node-right p1))
(setf (avl-tree--node-right p1) br)
(if (= 0 b1)
(progn
(avl-tree-node-set-balance br -1)
(avl-tree-node-set-balance p1 +1)
(setf (avl-tree--node-balance br) -1)
(setf (avl-tree--node-balance p1) +1)
(setq result nil))
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-balance p1 0)
(setf (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance p1) 0)
(setq result t))
(avl-tree-node-set-branch node branch p1)
(setf (avl-tree--node-branch node branch) p1)
result)
;; Double LR rotation.
(setq p2 (avl-tree-node-right p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-right p1 (avl-tree-node-left p2))
(avl-tree-node-set-left p2 p1)
(avl-tree-node-set-left br (avl-tree-node-right p2))
(avl-tree-node-set-right p2 br)
(if (< b2 0)
(avl-tree-node-set-balance br +1)
(avl-tree-node-set-balance br 0))
(if (> b2 0)
(avl-tree-node-set-balance p1 -1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2)
(avl-tree-node-set-balance p2 0)
(setq p2 (avl-tree--node-right p1)
b2 (avl-tree--node-balance p2))
(setf (avl-tree--node-right p1) (avl-tree--node-left p2))
(setf (avl-tree--node-left p2) p1)
(setf (avl-tree--node-left br) (avl-tree--node-right p2))
(setf (avl-tree--node-right p2) br)
(setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
(setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
(setf (avl-tree--node-branch node branch) p2)
(setf (avl-tree--node-balance p2) 0)
t)))))
(defun avl-tree-do-del-internal (node branch q)
(let ((br (avl-tree-node-branch node branch)))
(if (avl-tree-node-right br)
(if (avl-tree-do-del-internal br +1 q)
(avl-tree-del-balance2 node branch))
(avl-tree-node-set-data q (avl-tree-node-data br))
(avl-tree-node-set-branch node branch
(avl-tree-node-left br))
(defun avl-tree--do-del-internal (node branch q)
(let ((br (avl-tree--node-branch node branch)))
(if (avl-tree--node-right br)
(if (avl-tree--do-del-internal br +1 q)
(avl-tree--del-balance2 node branch))
(setf (avl-tree--node-data q) (avl-tree--node-data br))
(setf (avl-tree--node-branch node branch)
(avl-tree--node-left br))
t)))
(defun avl-tree-do-delete (cmpfun root branch data)
(defun avl-tree--do-delete (cmpfun root branch data)
;; Return t if the height of the tree has shrunk.
(let ((br (avl-tree-node-branch root branch)))
(let ((br (avl-tree--node-branch root branch)))
(cond
((null br)
nil)
((funcall cmpfun data (avl-tree-node-data br))
(if (avl-tree-do-delete cmpfun br 0 data)
(avl-tree-del-balance1 root branch)))
((funcall cmpfun data (avl-tree--node-data br))
(if (avl-tree--do-delete cmpfun br 0 data)
(avl-tree--del-balance1 root branch)))
((funcall cmpfun (avl-tree-node-data br) data)
(if (avl-tree-do-delete cmpfun br 1 data)
(avl-tree-del-balance2 root branch)))
((funcall cmpfun (avl-tree--node-data br) data)
(if (avl-tree--do-delete cmpfun br 1 data)
(avl-tree--del-balance2 root branch)))
(t
;; Found it. Let's delete it.
(cond
((null (avl-tree-node-right br))
(avl-tree-node-set-branch root branch (avl-tree-node-left br))
((null (avl-tree--node-right br))
(setf (avl-tree--node-branch root branch) (avl-tree--node-left br))
t)
((null (avl-tree-node-left br))
(avl-tree-node-set-branch root branch (avl-tree-node-right br))
((null (avl-tree--node-left br))
(setf (avl-tree--node-branch root branch) (avl-tree--node-right br))
t)
(t
(if (avl-tree-do-del-internal br 0 br)
(avl-tree-del-balance1 root branch))))))))
(if (avl-tree--do-del-internal br 0 br)
(avl-tree--del-balance1 root branch))))))))
;; ----------------------------------------------------------------
;; Entering data
(defun avl-tree-enter-balance1 (node branch)
(defun avl-tree--enter-balance1 (node branch)
;; Rebalance a tree and return t if the height of the tree has grown.
(let ((br (avl-tree-node-branch node branch))
(let ((br (avl-tree--node-branch node branch))
p1 p2 b2 result)
(cond
((< (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
((< (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) 0)
nil)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br +1)
((= (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) +1)
t)
(t
;; Tree has grown => Rebalance.
(setq p1 (avl-tree-node-right br))
(if (> (avl-tree-node-balance p1) 0)
(setq p1 (avl-tree--node-right br))
(if (> (avl-tree--node-balance p1) 0)
;; Single RR rotation.
(progn
(avl-tree-node-set-right br (avl-tree-node-left p1))
(avl-tree-node-set-left p1 br)
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-branch node branch p1))
(setf (avl-tree--node-right br) (avl-tree--node-left p1))
(setf (avl-tree--node-left p1) br)
(setf (avl-tree--node-balance br) 0)
(setf (avl-tree--node-branch node branch) p1))
;; Double RL rotation.
(setq p2 (avl-tree-node-left p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-left p1 (avl-tree-node-right p2))
(avl-tree-node-set-right p2 p1)
(avl-tree-node-set-right br (avl-tree-node-left p2))
(avl-tree-node-set-left p2 br)
(if (> b2 0)
(avl-tree-node-set-balance br -1)
(avl-tree-node-set-balance br 0))
(if (< b2 0)
(avl-tree-node-set-balance p1 +1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2))
(avl-tree-node-set-balance (avl-tree-node-branch node branch) 0)
(setq p2 (avl-tree--node-left p1)
b2 (avl-tree--node-balance p2))
(setf (avl-tree--node-left p1) (avl-tree--node-right p2))
(setf (avl-tree--node-right p2) p1)
(setf (avl-tree--node-right br) (avl-tree--node-left p2))
(setf (avl-tree--node-left p2) br)
(setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
(setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
(setf (avl-tree--node-branch node branch) p2))
(setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
nil))))
(defun avl-tree-enter-balance2 (node branch)
(defun avl-tree--enter-balance2 (node branch)
;; Return t if the tree has grown.
(let ((br (avl-tree-node-branch node branch))
(let ((br (avl-tree--node-branch node branch))
p1 p2 b2)
(cond
((> (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
((> (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) 0)
nil)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br -1)
((= (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance br) -1)
t)
(t
;; Balance was -1 => Rebalance.
(setq p1 (avl-tree-node-left br))
(if (< (avl-tree-node-balance p1) 0)
(setq p1 (avl-tree--node-left br))
(if (< (avl-tree--node-balance p1) 0)
;; Single LL rotation.
(progn
(avl-tree-node-set-left br (avl-tree-node-right p1))
(avl-tree-node-set-right p1 br)
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-branch node branch p1))
(setf (avl-tree--node-left br) (avl-tree--node-right p1))
(setf (avl-tree--node-right p1) br)
(setf (avl-tree--node-balance br) 0)
(setf (avl-tree--node-branch node branch) p1))
;; Double LR rotation.
(setq p2 (avl-tree-node-right p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-right p1 (avl-tree-node-left p2))
(avl-tree-node-set-left p2 p1)
(avl-tree-node-set-left br (avl-tree-node-right p2))
(avl-tree-node-set-right p2 br)
(if (< b2 0)
(avl-tree-node-set-balance br +1)
(avl-tree-node-set-balance br 0))
(if (> b2 0)
(avl-tree-node-set-balance p1 -1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2))
(avl-tree-node-set-balance (avl-tree-node-branch node branch) 0)
(setq p2 (avl-tree--node-right p1)
b2 (avl-tree--node-balance p2))
(setf (avl-tree--node-right p1) (avl-tree--node-left p2))
(setf (avl-tree--node-left p2) p1)
(setf (avl-tree--node-left br) (avl-tree--node-right p2))
(setf (avl-tree--node-right p2) br)
(setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
(setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
(setf (avl-tree--node-branch node branch) p2))
(setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
nil))))
(defun avl-tree-do-enter (cmpfun root branch data)
(defun avl-tree--do-enter (cmpfun root branch data)
;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY.
(let ((br (avl-tree-node-branch root branch)))
(let ((br (avl-tree--node-branch root branch)))
(cond
((null br)
;; Data not in tree, insert it.
(avl-tree-node-set-branch
root branch (avl-tree-node-create nil nil data 0))
(setf (avl-tree--node-branch root branch)
(avl-tree--node-create nil nil data 0))
t)
((funcall cmpfun data (avl-tree-node-data br))
(and (avl-tree-do-enter cmpfun br 0 data)
(avl-tree-enter-balance2 root branch)))
((funcall cmpfun data (avl-tree--node-data br))
(and (avl-tree--do-enter cmpfun br 0 data)
(avl-tree--enter-balance2 root branch)))
((funcall cmpfun (avl-tree-node-data br) data)
(and (avl-tree-do-enter cmpfun br 1 data)
(avl-tree-enter-balance1 root branch)))
((funcall cmpfun (avl-tree--node-data br) data)
(and (avl-tree--do-enter cmpfun br 1 data)
(avl-tree--enter-balance1 root branch)))
(t
(avl-tree-node-set-data br data)
(setf (avl-tree--node-data br) data)
nil))))
;; ----------------------------------------------------------------
(defun avl-tree-mapc (map-function root)
(defun avl-tree--mapc (map-function root)
;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
;; The function is applied in-order.
;;
@ -378,72 +339,59 @@ NEWVAL is new value of the branch.\""
(push nil stack)
(while node
(if (and go-left
(avl-tree-node-left node))
(avl-tree--node-left node))
;; Do the left subtree first.
(progn
(push node stack)
(setq node (avl-tree-node-left node)))
(setq node (avl-tree--node-left node)))
;; Apply the function...
(funcall map-function node)
;; and do the right subtree.
(if (avl-tree-node-right node)
(setq node (avl-tree-node-right node)
go-left t)
(setq node (pop stack)
go-left nil))))))
(setq node (if (setq go-left (avl-tree--node-right node))
(avl-tree--node-right node)
(pop stack)))))))
(defun avl-tree-do-copy (root)
(defun avl-tree--do-copy (root)
;; Copy the avl tree with ROOT as root.
;; Highly recursive. INTERNAL USE ONLY.
(if (null root)
nil
(avl-tree-node-create
(avl-tree-do-copy (avl-tree-node-left root))
(avl-tree-do-copy (avl-tree-node-right root))
(avl-tree-node-data root)
(avl-tree-node-balance root))))
(avl-tree--node-create
(avl-tree--do-copy (avl-tree--node-left root))
(avl-tree--do-copy (avl-tree--node-right root))
(avl-tree--node-data root)
(avl-tree--node-balance root))))
;;; ================================================================
;;; The public functions which operate on AVL trees.
;; ================================================================
;;; The public functions which operate on AVL trees.
(defun avl-tree-create (compare-function)
"Create a new empty avl tree and return it.
COMPARE-FUNCTION is a function which takes two arguments, A and B,
and returns non-nil if A is less than B, and nil otherwise."
(cons 'AVL-TREE
(cons (avl-tree-node-create nil nil nil 0)
compare-function)))
(defalias 'avl-tree-compare-function 'avl-tree--cmpfun
"Return the comparison function for the avl tree TREE.
(defun avl-tree-p (obj)
"Return t if OBJ is an avl tree, nil otherwise."
(eq (car-safe obj) 'AVL-TREE))
(defun avl-tree-compare-function (tree)
"Return the comparison function for the avl tree TREE."
(avl-tree-cmpfun tree))
\(fn TREE)")
(defun avl-tree-empty (tree)
"Return t if avl tree TREE is emtpy, otherwise return nil."
(null (avl-tree-root tree)))
(null (avl-tree--root tree)))
(defun avl-tree-enter (tree data)
"In the avl tree TREE insert DATA.
Return DATA."
(avl-tree-do-enter (avl-tree-cmpfun tree)
(avl-tree-dummyroot tree)
0
data)
(avl-tree--do-enter (avl-tree--cmpfun tree)
(avl-tree--dummyroot tree)
0
data)
data)
(defun avl-tree-delete (tree data)
"From the avl tree TREE, delete DATA.
Return the element in TREE which matched DATA,
nil if no element matched."
(avl-tree-do-delete (avl-tree-cmpfun tree)
(avl-tree-dummyroot tree)
0
data))
(avl-tree--do-delete (avl-tree--cmpfun tree)
(avl-tree--dummyroot tree)
0
data))
(defun avl-tree-member (tree data)
"Return the element in the avl tree TREE which matches DATA.
@ -451,82 +399,72 @@ Matching uses the compare function previously specified in
`avl-tree-create' when TREE was created.
If there is no such element in the tree, the value is nil."
(let ((node (avl-tree-root tree))
(compare-function (avl-tree-cmpfun tree))
(let ((node (avl-tree--root tree))
(compare-function (avl-tree--cmpfun tree))
found)
(while (and node
(not found))
(cond
((funcall compare-function data (avl-tree-node-data node))
(setq node (avl-tree-node-left node)))
((funcall compare-function (avl-tree-node-data node) data)
(setq node (avl-tree-node-right node)))
((funcall compare-function data (avl-tree--node-data node))
(setq node (avl-tree--node-left node)))
((funcall compare-function (avl-tree--node-data node) data)
(setq node (avl-tree--node-right node)))
(t
(setq found t))))
(if node
(avl-tree-node-data node)
(avl-tree--node-data node)
nil)))
(defun avl-tree-map (__map-function__ tree)
"Apply __MAP-FUNCTION__ to all elements in the avl tree TREE."
(avl-tree-mapc
(function (lambda (node)
(avl-tree-node-set-data
node (funcall __map-function__
(avl-tree-node-data node)))))
(avl-tree-root tree)))
(avl-tree--mapc
(lambda (node)
(setf (avl-tree--node-data node)
(funcall __map-function__ (avl-tree--node-data node))))
(avl-tree--root tree)))
(defun avl-tree-first (tree)
"Return the first element in TREE, or nil if TREE is empty."
(let ((node (avl-tree-root tree)))
(if node
(progn
(while (avl-tree-node-left node)
(setq node (avl-tree-node-left node)))
(avl-tree-node-data node))
nil)))
(let ((node (avl-tree--root tree)))
(when node
(while (avl-tree--node-left node)
(setq node (avl-tree--node-left node)))
(avl-tree--node-data node))))
(defun avl-tree-last (tree)
"Return the last element in TREE, or nil if TREE is empty."
(let ((node (avl-tree-root tree)))
(if node
(progn
(while (avl-tree-node-right node)
(setq node (avl-tree-node-right node)))
(avl-tree-node-data node))
nil)))
(let ((node (avl-tree--root tree)))
(when node
(while (avl-tree--node-right node)
(setq node (avl-tree--node-right node)))
(avl-tree--node-data node))))
(defun avl-tree-copy (tree)
"Return a copy of the avl tree TREE."
(let ((new-tree (avl-tree-create (avl-tree-cmpfun tree))))
(avl-tree-node-set-left (avl-tree-dummyroot new-tree)
(avl-tree-do-copy (avl-tree-root tree)))
(let ((new-tree (avl-tree-create (avl-tree--cmpfun tree))))
(setf (avl-tree--root new-tree) (avl-tree--do-copy (avl-tree--root tree)))
new-tree))
(defun avl-tree-flatten (tree)
"Return a sorted list containing all elements of TREE."
(nreverse
(let ((treelist nil))
(avl-tree-mapc
(function (lambda (node)
(setq treelist (cons (avl-tree-node-data node)
treelist))))
(avl-tree-root tree))
(avl-tree--mapc
(lambda (node) (push (avl-tree--node-data node) treelist))
(avl-tree--root tree))
treelist)))
(defun avl-tree-size (tree)
"Return the number of elements in TREE."
(let ((treesize 0))
(avl-tree-mapc
(function (lambda (data)
(setq treesize (1+ treesize))
data))
(avl-tree-root tree))
(avl-tree--mapc
(lambda (data) (setq treesize (1+ treesize)))
(avl-tree--root tree))
treesize))
(defun avl-tree-clear (tree)
"Clear the avl tree TREE."
(avl-tree-node-set-left (avl-tree-dummyroot tree) nil))
(setf (avl-tree--root tree) nil))
(provide 'avl-tree)