Initial revision

This commit is contained in:
Richard M. Stallman 1994-03-21 17:36:52 +00:00
parent a0acfc98dc
commit 83ac6b4598
3 changed files with 2585 additions and 0 deletions

1136
lispref/control.texi Normal file

File diff suppressed because it is too large Load diff

867
lispref/intro.texi Normal file
View file

@ -0,0 +1,867 @@
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
@c See the file elisp.texi for copying conditions.
@setfilename ../info/intro
@node Copying, Introduction, Top, Top
@comment node-name, next, previous, up
@unnumbered GNU GENERAL PUBLIC LICENSE
@center Version 2, June 1991
@display
Copyright @copyright{} 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
@end display
@unnumberedsec Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software---to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
@iftex
@unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
@end iftex
@ifinfo
@center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
@end ifinfo
@enumerate 0
@item
This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The ``Program'', below,
refers to any such program or work, and a ``work based on the Program''
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term ``modification''.) Each licensee is addressed as ``you''.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
@item
You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
@item
You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
@enumerate a
@item
You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
@item
You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
@item
If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
@end enumerate
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
@item
You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
@enumerate a
@item
Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
@item
Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
@item
Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
@end enumerate
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
@item
You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
@item
You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
@item
Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
@item
If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
@item
If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
@item
The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and ``any
later version'', you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
@item
If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
@iftex
@heading NO WARRANTY
@end iftex
@ifinfo
@center NO WARRANTY
@end ifinfo
@item
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW@. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE@. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU@. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
@item
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
@end enumerate
@iftex
@heading END OF TERMS AND CONDITIONS
@end iftex
@ifinfo
@center END OF TERMS AND CONDITIONS
@end ifinfo
@page
@unnumberedsec How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the ``copyright'' line and a pointer to where the full notice is found.
@smallexample
@var{one line to give the program's name and an idea of what it does.}
Copyright (C) 19@var{yy} @var{name of author}
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE@. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
@end smallexample
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
@smallexample
Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.
@end smallexample
The hypothetical commands @samp{show w} and @samp{show c} should show
the appropriate parts of the General Public License. Of course, the
commands you use may be called something other than @samp{show w} and
@samp{show c}; they could even be mouse-clicks or menu items---whatever
suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ``copyright disclaimer'' for the program, if
necessary. Here is a sample; alter the names:
@smallexample
@group
Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.
@var{signature of Ty Coon}, 1 April 1989
Ty Coon, President of Vice
@end group
@end smallexample
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.
@node Introduction, Types of Lisp Object, Copying, Top
@chapter Introduction
Most of the GNU Emacs text editor is written in the programming
language called Emacs Lisp. You can write new code in Emacs Lisp and
install it as an extension to the editor. However, Emacs Lisp is more
than a mere ``extension language''; it is a full computer programming
language in its own right. You can use it as you would any other
programming language.
Because Emacs Lisp is designed for use in an editor, it has special
features for scanning and parsing text as well as features for handling
files, buffers, displays, subprocesses, and so on. Emacs Lisp is
closely integrated with the editing facilities; thus, editing commands
are functions that can also conveniently be called from Lisp programs,
and parameters for customization are ordinary Lisp variables.
This manual describes Emacs Lisp, presuming considerable familiarity
with the use of Emacs for editing. (See @cite{The GNU Emacs Manual},
for this basic information.) Generally speaking, the earlier chapters
describe features of Emacs Lisp that have counterparts in many
programming languages, and later chapters describe features that are
peculiar to Emacs Lisp or relate specifically to editing.
This is edition 2.3.
@menu
* Caveats:: Flaws and a request for help.
* Lisp History:: Emacs Lisp is descended from Maclisp.
* Conventions:: How the manual is formatted.
* Acknowledgements:: The authors, editors, and sponsors of this manual.
@end menu
@node Caveats
@section Caveats
This manual has gone through numerous drafts. It is nearly complete
but not flawless. There are a few sections which are not included,
either because we consider them secondary (such as most of the
individual modes) or because they are yet to be written.
Because we are not able to deal with them completely, we have left out
several parts intentionally. This includes most information about usage
on VMS.
The manual should be fully correct in what it does cover, and it is
therefore open to criticism on anything it says---from specific examples
and descriptive text, to the ordering of chapters and sections. If
something is confusing, or you find that you have to look at the sources
or experiment to learn something not covered in the manual, then perhaps
the manual should be fixed. Please let us know.
@iftex
As you use the manual, we ask that you mark pages with corrections so
you can later look them up and send them in. If you think of a simple,
real life example for a function or group of functions, please make an
effort to write it up and send it in. Please reference any comments to
the chapter name, section name, and function name, as appropriate, since
page numbers and chapter and section numbers will change. Also state
the number of the edition which you are criticizing.
@end iftex
@ifinfo
As you use this manual, we ask that you send corrections as soon as you
find them. If you think of a simple, real life example for a function
or group of functions, please make an effort to write it up and send it
in. Please reference any comments to the node name and function or
variable name, as appropriate. Also state the number of the edition
which you are criticizing.
@end ifinfo
Please mail comments and corrections to
@example
bug-lisp-manual@@prep.ai.mit.edu
@end example
@noindent
We let mail to this list accumulate unread until someone decides to
apply the corrections. Months, and sometimes years, go by between
updates. So please attach no significance to the lack of a reply---your
mail @emph{will} be acted on in due time. If you want to contact the
Emacs maintainers more quickly, send mail to
@code{bug-gnu-emacs@@prep.ai.mit.edu}.
@display
--Bil Lewis, Dan LaLiberte, Richard Stallman
@end display
@node Lisp History
@section Lisp History
@cindex Lisp history
Lisp (LISt Processing language) was first developed in the late 1950s
at the Massachusetts Institute of Technology for research in artificial
intelligence. The great power of the Lisp language makes it superior
for other purposes as well, such as writing editing commands.
@cindex Maclisp
@cindex Common Lisp
Dozens of Lisp implementations have been built over the years, each
with its own idiosyncrasies. Many of them were inspired by Maclisp,
which was written in the 1960's at MIT's Project MAC. Eventually the
implementors of the descendents of Maclisp came together and developed a
standard for Lisp systems, called Common Lisp.
GNU Emacs Lisp is largely inspired by Maclisp, and a little by Common
Lisp. If you know Common Lisp, you will notice many similarities.
However, many of the features of Common Lisp have been omitted or
simplified in order to reduce the memory requirements of GNU Emacs.
Sometimes the simplifications are so drastic that a Common Lisp user
might be very confused. We will occasionally point out how GNU Emacs
Lisp differs from Common Lisp. If you don't know Common Lisp, don't
worry about it; this manual is self-contained.
@node Conventions
@section Conventions
This section explains the notational conventions that are used in this
manual. You may want to skip this section and refer back to it later.
@menu
* Some Terms:: Explanation of terms we use in this manual.
* nil and t:: How the symbols @code{nil} and @code{t} are used.
* Evaluation Notation:: The format we use for examples of evaluation.
* Printing Notation:: The format we use for examples that print output.
* Error Messages:: The format we use for examples of errors.
* Buffer Text Notation:: The format we use for buffer contents in examples.
* Format of Descriptions:: Notation for describing functions, variables, etc.
@end menu
@node Some Terms
@subsection Some Terms
Throughout this manual, the phrases ``the Lisp reader'' and ``the Lisp
printer'' are used to refer to those routines in Lisp that convert
textual representations of Lisp objects into actual objects, and vice
versa. @xref{Printed Representation}, for more details. You, the
person reading this manual, are thought of as ``the programmer'' and are
addressed as ``you''. ``The user'' is the person who uses Lisp programs
including those you write.
@cindex fonts
Examples of Lisp code appear in this font or form: @code{(list 1 2
3)}. Names that represent arguments or metasyntactic variables appear
in this font or form: @var{first-number}.
@node nil and t
@subsection @code{nil} and @code{t}
@cindex @code{nil}, uses of
@cindex truth value
@cindex boolean
@cindex false
In Lisp, the symbol @code{nil} is overloaded with three meanings: it
is a symbol with the name @samp{nil}; it is the logical truth value
@var{false}; and it is the empty list---the list of zero elements.
When used as a variable, @code{nil} always has the value @code{nil}.
As far as the Lisp reader is concerned, @samp{()} and @samp{nil} are
identical: they stand for the same object, the symbol @code{nil}. The
different ways of writing the symbol are intended entirely for human
readers. After the Lisp reader has read either @samp{()} or @samp{nil},
there is no way to determine which representation was actually written
by the programmer.
In this manual, we use @code{()} when we wish to emphasize that it
means the empty list, and we use @code{nil} when we wish to emphasize
that it means the truth value @var{false}. That is a good convention to use
in Lisp programs also.
@example
(cons 'foo ()) ; @r{Emphasize the empty list}
(not nil) ; @r{Emphasize the truth value @var{false}}
@end example
@cindex @code{t} and truth
@cindex true
In contexts where a truth value is expected, any non-@code{nil} value
is considered to be @var{true}. However, @code{t} is the preferred way
to represent the truth value @var{true}. When you need to choose a
value which represents @var{true}, and there is no other basis for
choosing, use @code{t}. The symbol @code{t} always has value @code{t}.
In Emacs Lisp, @code{nil} and @code{t} are special symbols that always
evaluate to themselves. This is so that you do not need to quote them
to use them as constants in a program. An attempt to change their
values results in a @code{setting-constant} error. @xref{Accessing
Variables}.
@node Evaluation Notation
@subsection Evaluation Notation
@cindex evaluation notation
@cindex documentation notation
A Lisp expression that you can evaluate is called a @dfn{form}.
Evaluating a form always produces a result, which is a Lisp object. In
the examples in this manual, this is indicated with @samp{@result{}}:
@example
(car '(1 2))
@result{} 1
@end example
@noindent
You can read this as ``@code{(car '(1 2))} evaluates to 1''.
When a form is a macro call, it expands into a new form for Lisp to
evaluate. We show the result of the expansion with
@samp{@expansion{}}. We may or may not show the actual result of the
evaluation of the expanded form.
@example
(third '(a b c))
@expansion{} (car (cdr (cdr '(a b c))))
@result{} c
@end example
Sometimes to help describe one form we show another form which
produces identical results. The exact equivalence of two forms is
indicated with @samp{@equiv{}}.
@example
(make-sparse-keymap) @equiv{} (list 'keymap)
@end example
@node Printing Notation
@subsection Printing Notation
@cindex printing notation
Many of the examples in this manual print text when they are
evaluated. If you execute the code from an example in a Lisp
Interaction buffer (such as the buffer @samp{*scratch*}), the printed
text is inserted into the buffer. If you execute the example by other
means (such as by evaluating the function @code{eval-region}), it prints
text by displaying it in the echo area. You should be aware that text
displayed in the echo area is truncated to a single line.
Examples in this manual indicate printed text with @samp{@print{}},
irrespective of where that text goes. The value returned by evaluating
the form (here @code{bar}) follows on a separate line.
@example
@group
(progn (print 'foo) (print 'bar))
@print{} foo
@print{} bar
@result{} bar
@end group
@end example
@node Error Messages
@subsection Error Messages
@cindex error message notation
Some examples signal errors. This normally displays an error message
in the echo area. We show the error message on a line starting with
@samp{@error{}}. Note that @samp{@error{}} itself does not appear in
the echo area.
@example
(+ 23 'x)
@error{} Wrong type argument: integer-or-marker-p, x
@end example
@node Buffer Text Notation
@subsection Buffer Text Notation
@cindex buffer text notation
Some examples show modifications to text in a buffer, with ``before''
and ``after'' versions of the text. These examples show the contents of
the buffer in question between two lines of dashes containing the buffer
name. In addition, @samp{@point{}} indicates the location of point.
(The symbol for point, of course, is not part of the text in the buffer;
it indicates the place @emph{between} two characters where point is
located.)
@example
---------- Buffer: foo ----------
This is the @point{}contents of foo.
---------- Buffer: foo ----------
(insert "changed ")
@result{} nil
---------- Buffer: foo ----------
This is the changed @point{}contents of foo.
---------- Buffer: foo ----------
@end example
@node Format of Descriptions
@subsection Format of Descriptions
@cindex description format
Functions, variables, macros, commands, user options, and special
forms are described in this manual in a uniform format. The first
line of a description contains the name of the item followed by its
arguments, if any.
@ifinfo
The category---function, variable, or whatever---appears at the
beginning of the line.
@end ifinfo
@iftex
The category---function, variable, or whatever---is printed next to the
right margin.
@end iftex
The description follows on succeeding lines, sometimes with examples.
@menu
* A Sample Function Description:: A description of an imaginary
function, @code{foo}.
* A Sample Variable Description:: A description of an imaginary
variable,
@code{electric-future-map}.
@end menu
@node A Sample Function Description
@subsubsection A Sample Function Description
@cindex function descriptions
@cindex command descriptions
@cindex macro descriptions
@cindex special form descriptions
In a function description, the name of the function being described
appears first. It is followed on the same line by a list of parameters.
The names used for the parameters are also used in the body of the
description.
The appearance of the keyword @code{&optional} in the parameter list
indicates that the arguments for subsequent parameters may be omitted
(omitted parameters default to @code{nil}). Do not write
@code{&optional} when you call the function.
The keyword @code{&rest} (which will always be followed by a single
parameter) indicates that any number of arguments can follow. The value
of the single following parameter will be a list of all these arguments.
Do not write @code{&rest} when you call the function.
Here is a description of an imaginary function @code{foo}:
@defun foo integer1 &optional integer2 &rest integers
The function @code{foo} subtracts @var{integer1} from @var{integer2},
then adds all the rest of the arguments to the result. If @var{integer2}
is not supplied, then the number 19 is used by default.
@example
(foo 1 5 3 9)
@result{} 16
(foo 5)
@result{} 14
@end example
More generally,
@example
(foo @var{w} @var{x} @var{y}@dots{})
@equiv{}
(+ (- @var{x} @var{w}) @var{y}@dots{})
@end example
@end defun
Any parameter whose name contains the name of a type (e.g.,
@var{integer}, @var{integer1} or @var{buffer}) is expected to be of that
type. A plural of a type (such as @var{buffers}) often means a list of
objects of that type. Parameters named @var{object} may be of any type.
(@xref{Types of Lisp Object}, for a list of Emacs object types.)
Parameters with other sorts of names (e.g., @var{new-file}) are
discussed specifically in the description of the function. In some
sections, features common to parameters of several functions are
described at the beginning.
@xref{Lambda Expressions}, for a more complete description of optional
and rest arguments.
Command, macro, and special form descriptions have the same format,
but the word `Function' is replaced by `Command', `Macro', or `Special
Form', respectively. Commands are simply functions that may be called
interactively; macros process their arguments differently from functions
(the arguments are not evaluated), but are presented the same way.
Special form descriptions use a more complex notation to specify
optional and repeated parameters because they can break the argument
list down into separate arguments in more complicated ways.
@samp{@code{@r{[}@var{optional-arg}@r{]}}} means that @var{optional-arg} is
optional and @samp{@var{repeated-args}@dots{}} stands for zero or more
arguments. Parentheses are used when several arguments are grouped into
additional levels of list structure. Here is an example:
@defspec count-loop (@var{var} [@var{from} @var{to} [@var{inc}]]) @var{body}@dots{}
This imaginary special form implements a loop that executes the
@var{body} forms and then increments the variable @var{var} on each
iteration. On the first iteration, the variable has the value
@var{from}; on subsequent iterations, it is incremented by 1 (or by
@var{inc} if that is given). The loop exits before executing @var{body}
if @var{var} equals @var{to}. Here is an example:
@example
(count-loop (i 0 10)
(prin1 i) (princ " ")
(prin1 (aref vector i)) (terpri))
@end example
If @var{from} and @var{to} are omitted, then @var{var} is bound to
@code{nil} before the loop begins, and the loop exits if @var{var} is
non-@code{nil} at the beginning of an iteration. Here is an example:
@example
(count-loop (done)
(if (pending)
(fixit)
(setq done t)))
@end example
In this special form, the arguments @var{from} and @var{to} are
optional, but must both be present or both absent. If they are present,
@var{inc} may optionally be specified as well. These arguments are
grouped with the argument @var{var} into a list, to distinguish them
from @var{body}, which includes all remaining elements of the form.
@end defspec
@node A Sample Variable Description
@subsubsection A Sample Variable Description
@cindex variable descriptions
@cindex option descriptions
A @dfn{variable} is a name that can hold a value. Although any
variable can be set by the user, certain variables that exist
specifically so that users can change them are called @dfn{user
options}. Ordinary variables and user options are described using a
format like that for functions except that there are no arguments.
Here is a description of the imaginary @code{electric-future-map}
variable.@refill
@defvar electric-future-map
The value of this variable is a full keymap used by Electric Command
Future mode. The functions in this map allow you to edit commands you
have not yet thought about executing.
@end defvar
User option descriptions have the same format, but `Variable' is
replaced by `User Option'.
@node Acknowledgements
@section Acknowledgements
This manual was written by Robert Krawitz, Bil Lewis, Dan LaLiberte,
Richard M. Stallman and Chris Welty, the volunteers of the GNU manual
group, in an effort extending over several years. Robert J. Chassell
helped to review and edit the manual, with the support of the Defense
Advanced Research Projects Agency, ARPA Order 6082, arranged by Warren
A. Hunt, Jr. of Computational Logic, Inc.
Corrections were supplied by Karl Berry, Jim Blandy, Bard Bloom,
Stephane Boucher, David Boyes, Alan Carroll, Richard Davis, Lawrence
R. Dodd, Peter Doornbosch, David A. Duff, Chris Eich, Beverly
Erlebacher, David Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen Gildea,
Bob Glickstein, Eric Hanchrow, George Hartzell, Nathan Hess, Masayuki
Ida, Dan Jacobson, Jak Kirman, Bob Knighten, Frederick M. Korz, Joe
Lammens, Glenn M. Lewis, K. Richard Magill, Brian Marick, Roland
McGrath, Skip Montanaro, John Gardiner Myers, Thomas A. Peterson,
Francesco Potorti, Friedrich Pukelsheim, Arnold D. Robbins, Raul
Rockwell, Per Starback, Shinichirou Sugou, Kimmo Suominen, Edward Tharp,
Bill Trost, Rickard Westman, Jean White, Matthew Wilding, Carl Witty,
Dale Worley, Rusty Wright, and David D. Zuhn.

582
lispref/loading.texi Normal file
View file

@ -0,0 +1,582 @@
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
@c See the file elisp.texi for copying conditions.
@setfilename ../info/loading
@node Loading, Byte Compilation, Macros, Top
@chapter Loading
@cindex loading
@cindex library
@cindex Lisp library
Loading a file of Lisp code means bringing its contents into the Lisp
environment in the form of Lisp objects. Emacs finds and opens the
file, reads the text, evaluates each form, and then closes the file.
The load functions evaluate all the expressions in a file just
as the @code{eval-current-buffer} function evaluates all the
expressions in a buffer. The difference is that the load functions
read and evaluate the text in the file as found on disk, not the text
in an Emacs buffer.
@cindex top-level form
The loaded file must contain Lisp expressions, either as source code
or, optionally, as byte-compiled code. Each form in the file is called
a @dfn{top-level form}. There is no special format for the forms in a
loadable file; any form in a file may equally well be typed directly
into a buffer and evaluated there. (Indeed, most code is tested this
way.) Most often, the forms are function definitions and variable
definitions.
A file containing Lisp code is often called a @dfn{library}. Thus,
the ``Rmail library'' is a file containing code for Rmail mode.
Similarly, a ``Lisp library directory'' is a directory of files
containing Lisp code.
@menu
* How Programs Do Loading:: The @code{load} function and others.
* Autoload:: Setting up a function to autoload.
* Repeated Loading:: Precautions about loading a file twice.
* Features:: Loading a library if it isn't already loaded.
* Unloading:: How to ``unload'' a library that was loaded.
* Hooks for Loading:: Providing code to be run when
particular libraries are loaded.
@end menu
@node How Programs Do Loading
@section How Programs Do Loading
Emacs Lisp has several interfaces for loading. For example,
@code{autoload} creates a placeholder object for a function in a file;
trying to call the autoloading function loads the file to get the
function's real definition (@pxref{Autoload}). @code{require} loads a
file if it isn't already loaded (@pxref{Features}). Ultimately, all
these facilities call the @code{load} function to do the work.
@defun load filename &optional missing-ok nomessage nosuffix
This function finds and opens a file of Lisp code, evaluates all the
forms in it, and closes the file.
To find the file, @code{load} first looks for a file named
@file{@var{filename}.elc}, that is, for a file whose name is
@var{filename} with @samp{.elc} appended. If such a file exists, it is
loaded. If there is no file by that name, then @code{load} looks for a
file names @file{@var{filename}.el}. If that file exists, it is loaded.
Finally, if neither of those names is found, @code{load} looks for a
file named @var{filename} with nothing appended, and loads it if it
exists. (The @code{load} function is not clever about looking at
@var{filename}. In the perverse case of a file named @file{foo.el.el},
evaluation of @code{(load "foo.el")} will indeed find it.)
If the optional argument @var{nosuffix} is non-@code{nil}, then the
suffixes @samp{.elc} and @samp{.el} are not tried. In this case, you
must specify the precise file name you want.
If @var{filename} is a relative file name, such as @file{foo} or
@file{baz/foo.bar}, @code{load} searches for the file using the variable
@code{load-path}. It appends @var{filename} to each of the directories
listed in @code{load-path}, and loads the first file it finds whose name
matches. The current default directory is tried only if it is specified
in @code{load-path}, where @code{nil} stands for the default directory.
@code{load} tries all three possible suffixes in the first directory in
@code{load-path}, then all three suffixes in the second directory, and
so on.
If you get a warning that @file{foo.elc} is older than @file{foo.el}, it
means you should consider recompiling @file{foo.el}. @xref{Byte
Compilation}.
Messages like @samp{Loading foo...} and @samp{Loading foo...done} appear
in the echo area during loading unless @var{nomessage} is
non-@code{nil}.
@cindex load errors
Any unhandled errors while loading a file terminate loading. If the
load was done for the sake of @code{autoload}, certain kinds of
top-level forms, those which define functions, are undone.
@kindex file-error
If @code{load} can't find the file to load, then normally it signals the
error @code{file-error} (with @samp{Cannot open load file
@var{filename}}). But if @var{missing-ok} is non-@code{nil}, then
@code{load} just returns @code{nil}.
@code{load} returns @code{t} if the file loads successfully.
@end defun
@ignore
@deffn Command load-file filename
This function loads the file @var{filename}. If @var{filename} is an
absolute file name, then it is loaded. If it is relative, then the
current default directory is assumed. @code{load-path} is not used, and
suffixes are not appended. Use this function if you wish to specify
the file to be loaded exactly.
@end deffn
@deffn Command load-library library
This function loads the library named @var{library}. A library is
nothing more than a file that may be loaded as described earlier. This
function is identical to @code{load}, save that it reads a file name
interactively with completion.
@end deffn
@end ignore
@defopt load-path
@cindex @code{EMACSLOADPATH} environment variable
The value of this variable is a list of directories to search when
loading files with @code{load}. Each element is a string (which must be
a directory name) or @code{nil} (which stands for the current working
directory). The value of @code{load-path} is initialized from the
environment variable @code{EMACSLOADPATH}, if that exists; otherwise its
default value is specified in @file{emacs/src/paths.h} when Emacs is
built.
The syntax of @code{EMACSLOADPATH} is the same as used for @code{PATH};
@samp{:} separates directory names, and @samp{.} is used for the current
default directory. Here is an example of how to set your
@code{EMACSLOADPATH} variable from a @code{csh} @file{.login} file:
@c This overfull hbox is OK. --rjc 16mar92
@smallexample
setenv EMACSLOADPATH .:/user/bil/emacs:/usr/lib/emacs/lisp
@end smallexample
Here is how to set it using @code{sh}:
@smallexample
export EMACSLOADPATH
EMACSLOADPATH=.:/user/bil/emacs:/usr/local/lib/emacs/lisp
@end smallexample
Here is an example of code you can place in a @file{.emacs} file to add
several directories to the front of your default @code{load-path}:
@smallexample
(setq load-path
(append (list nil "/user/bil/emacs"
"/usr/local/lisplib"
(expand-file-name "~/emacs"))
load-path))
@end smallexample
@c Wordy to rid us of an overfull hbox. --rjc 15mar92
@noindent
In this example, the path searches the current working directory first,
followed then by the @file{/user/bil/emacs} directory and then by
the @file{/usr/local/lisplib} directory,
which are then followed by the standard directories for Lisp code.
The command line options @samp{-l} or @samp{-load} specify Lispa library
to load. Since this file might be in the current directory, Emacs 18
temporarily adds the current directory to the front of @code{load-path}
so the file can be found there. Newer Emacs versions also find such
files in the current directory, but without altering @code{load-path}.
@end defopt
@defvar load-in-progress
This variable is non-@code{nil} if Emacs is in the process of loading a
file, and it is @code{nil} otherwise. This is how @code{defun} and
@code{provide} determine whether a load is in progress, so that their
effect can be undone if the load fails.
@end defvar
To learn how @code{load} is used to build Emacs, see @ref{Building Emacs}.
@node Autoload
@section Autoload
@cindex autoload
The @dfn{autoload} facility allows you to make a function or macro
available but put off loading its actual definition. The first call to
the function automatically reads the proper file to install the real
definition and other associated code, then runs the real definition
as if it had been loaded all along.
There are two ways to set up an autoloaded function: by calling
@code{autoload}, and by writing a special ``magic'' comment in the
source before the real definition. @code{autoload} is the low-level
primitive for autoloading; any Lisp program can call @code{autoload} at
any time. Magic comments do nothing on their own; they serve as a guide
for the command @code{update-file-autoloads}, which constructs calls to
@code{autoload} and arranges to execute them when Emacs is built. Magic
comments are the most convenient way to make a function autoload, but
only for packages installed along with Emacs.
@defun autoload symbol filename &optional docstring interactive type
This function defines the function (or macro) named @var{symbol} so as
to load automatically from @var{filename}. The string @var{filename}
specifies the file to load to get the real definition of @var{function}.
The argument @var{docstring} is the documentation string for the
function. Normally, this is the identical to the documentation string
in the function definition itself. Specifying the documentation string
in the call to @code{autoload} makes it possible to look at the
documentation without loading the function's real definition.
If @var{interactive} is non-@code{nil}, then the function can be called
interactively. This lets completion in @kbd{M-x} work without loading
the function's real definition. The complete interactive specification
need not be given here; it's not needed unless the user actually calls
@var{function}, and when that happens, it's time to load the real
definition.
You can autoload macros and keymaps as well as ordinary functions.
Specify @var{type} as @code{macro} if @var{function} is really a macro.
Specify @var{type} as @code{keymap} if @var{function} is really a
keymap. Various parts of Emacs need to know this information without
loading the real definition.
@cindex function cell in autoload
If @var{symbol} already has a non-void function definition that is not
an autoload object, @code{autoload} does nothing and returns @code{nil}.
If the function cell of @var{symbol} is void, or is already an autoload
object, then it is defined as an autoload object like this:
@example
(autoload @var{filename} @var{docstring} @var{interactive} @var{type})
@end example
For example,
@example
(symbol-function 'run-prolog)
@result{} (autoload "prolog" 169681 t nil)
@end example
@noindent
In this case, @code{"prolog"} is the name of the file to load, 169681
refers to the documentation string in the @file{emacs/etc/DOC} file
(@pxref{Documentation Basics}), @code{t} means the function is
interactive, and @code{nil} that it is not a macro or a keymap.
@end defun
@cindex autoload errors
The autoloaded file usually contains other definitions and may require
or provide one or more features. If the file is not completely loaded
(due to an error in the evaluation of its contents), any function
definitions or @code{provide} calls that occurred during the load are
undone. This is to ensure that the next attempt to call any function
autoloading from this file will try again to load the file. If not for
this, then some of the functions in the file might appear defined, but
they might fail to work properly for the lack of certain subroutines
defined later in the file and not loaded successfully.
If the autoloaded file fails to define the desired Lisp function or
macro, then an error is signaled with data @code{"Autoloading failed to
define function @var{function-name}"}.
@findex update-file-autoloads
@findex update-directory-autoloads
A magic autoload comment looks like @samp{;;;###autoload}, on a line
by itself, just before the real definition of the function in its
autoloadable source file. The command @kbd{M-x update-file-autoloads}
writes a corresponding @code{autoload} call into @file{loaddefs.el}.
Building Emacs loads @file{loaddefs.el} and thus calls @code{autoload}.
@kbd{M-x update-directory-autoloads} is even more powerful; it updates
autoloads for all files in the current directory.
The same magic comment can copy any kind of form into
@file{loaddefs.el}. If the form following the magic comment is not a
function definition, it is copied verbatim. You can also use a magic
comment to execute a form at build time executing it when the file
itself is loaded. To do this, write the form @dfn{on the same line} as
the magic comment. Since it is in a comment, it does nothing when you
load the source file; but @code{update-file-autoloads} copies it to
@file{loaddefs.el}, where it is executed while building Emacs.
The following example shows how @code{doctor} is prepared for
autoloading with a magic comment:
@smallexample
;;;###autoload
(defun doctor ()
"Switch to *doctor* buffer and start giving psychotherapy."
(interactive)
(switch-to-buffer "*doctor*")
(doctor-mode))
@end smallexample
@noindent
Here's what that produces in @file{loaddefs.el}:
@smallexample
(autoload 'doctor "doctor"
"\
Switch to *doctor* buffer and start giving psychotherapy."
t)
@end smallexample
@noindent
The backslash and newline immediately following the double-quote are a
convention used only in the preloaded Lisp files such as
@file{loaddefs.el}; they tell @code{make-docfile} to put the
documentation string in the @file{etc/DOC} file. @xref{Building Emacs}.
@node Repeated Loading
@comment node-name, next, previous, up
@section Repeated Loading
@cindex repeated loading
You may load one file more than once in an Emacs session. For
example, after you have rewritten and reinstalled a function definition
by editing it in a buffer, you may wish to return to the original
version; you can do this by reloading the file it came from.
When you load or reload files, bear in mind that the @code{load} and
@code{load-library} functions automatically load a byte-compiled file
rather than a non-compiled file of similar name. If you rewrite a file
that you intend to save and reinstall, remember to byte-compile it if
necessary; otherwise you may find yourself inadvertently reloading the
older, byte-compiled file instead of your newer, non-compiled file!
When writing the forms in a Lisp library file, keep in mind that the
file might be loaded more than once. For example, the choice of
@code{defvar} vs.@: @code{defconst} for defining a variable depends on
whether it is desirable to reinitialize the variable if the library is
reloaded: @code{defconst} does so, and @code{defvar} does not.
(@xref{Defining Variables}.)
The simplest way to add an element to an alist is like this:
@example
(setq minor-mode-alist
(cons '(leif-mode " Leif") minor-mode-alist))
@end example
@noindent
But this would add multiple elements if the library is reloaded.
To avoid the problem, write this:
@example
(or (assq 'leif-mode minor-mode-alist)
(setq minor-mode-alist
(cons '(leif-mode " Leif") minor-mode-alist)))
@end example
Occasionally you will want to test explicitly whether a library has
already been loaded. Here's one way to test, in a library, whether it
has been loaded before:
@example
(if (not (boundp 'foo-was-loaded))
@var{execute-first-time-only})
(setq foo-was-loaded t)
@end example
@noindent
If the library uses @code{provide} to provide a named feature, you can
use @code{featurep} to test whether the library has been loaded.
@xref{Features}.
@node Features
@section Features
@cindex features
@cindex requiring features
@cindex providing features
@code{provide} and @code{require} are an alternative to
@code{autoload} for loading files automatically. They work in terms of
named @dfn{features}. Autoloading is triggered by calling a specific
function, but a feature is loaded the first time another program asks
for it by name.
A feature name is a symbol that stands for a collection of functions,
variables, etc. The file that defines them should @dfn{provide} the
feature. Another program that uses them may ensure they are defined by
@dfn{requiring} the feature. This loads the file of definitions if it
hasn't been loaded already.
To require the presence of a feature, call @code{require} with the
feature name as argument. @code{require} looks in the global variable
@code{features} to see whether the desired feature has been provided
already. If not, it loads the feature from the appropriate file. This
file should call @code{provide} at the top-level to add the feature to
@code{features}; if it fails to do so, @code{require} signals an error.
@cindex load error with require
Features are normally named after the files that provide them, so that
@code{require} need not be given the file name.
For example, in @file{emacs/lisp/prolog.el},
the definition for @code{run-prolog} includes the following code:
@smallexample
(defun run-prolog ()
"Run an inferior Prolog process, input and output via buffer *prolog*."
(interactive)
(require 'comint)
(switch-to-buffer (make-comint "prolog" prolog-program-name))
(inferior-prolog-mode))
@end smallexample
@noindent
The expression @code{(require 'comint)} loads the file @file{comint.el}
if it has not yet been loaded. This ensures that @code{make-comint} is
defined.
The @file{comint.el} file contains the following top-level expression:
@smallexample
(provide 'comint)
@end smallexample
@noindent
This adds @code{comint} to the global @code{features} list, so that
@code{(require 'comint)} will henceforth know that nothing needs to be
done.
@cindex byte-compiling @code{require}
When @code{require} is used at top-level in a file, it takes effect
when you byte-compile that file (@pxref{Byte Compilation}) as well as
when you load it. This is in case the required package contains macros
that the byte compiler must know about.
Although top-level calls to @code{require} are evaluated during
byte compilation, @code{provide} calls are not. Therefore, you can
ensure that a file of definitions is loaded before it is byte-compiled
by including a @code{provide} followed by a @code{require} for the same
feature, as in the following example.
@smallexample
@group
(provide 'my-feature) ; @r{Ignored by byte compiler,}
; @r{evaluated by @code{load}.}
(require 'my-feature) ; @r{Evaluated by byte compiler.}
@end group
@end smallexample
@defun provide feature
This function announces that @var{feature} is now loaded, or being
loaded, into the current Emacs session. This means that the facilities
associated with @var{feature} are or will be available for other Lisp
programs.
The direct effect of calling @code{provide} is to add @var{feature} to
the front of the list @code{features} if it is not already in the list.
The argument @var{feature} must be a symbol. @code{provide} returns
@var{feature}.
@smallexample
features
@result{} (bar bish)
(provide 'foo)
@result{} foo
features
@result{} (foo bar bish)
@end smallexample
If the file isn't completely loaded, due to an error in the evaluating
its contents, any function definitions or @code{provide} calls that
occurred during the load are undone. @xref{Autoload}.
@end defun
@defun require feature &optional filename
This function checks whether @var{feature} is present in the current
Emacs session (using @code{(featurep @var{feature})}; see below). If it
is not, then @code{require} loads @var{filename} with @code{load}. If
@var{filename} is not supplied, then the name of the symbol
@var{feature} is used as the file name to load.
If loading the file fails to provide @var{feature}, @code{require}
signals an error, @samp{Required feature @var{feature} was not
provided}.
@end defun
@defun featurep feature
This function returns @code{t} if @var{feature} has been provided in the
current Emacs session (i.e., @var{feature} is a member of
@code{features}.)
@end defun
@defvar features
The value of this variable is a list of symbols that are the features
loaded in the current Emacs session. Each symbol was put in this list
with a call to @code{provide}. The order of the elements in the
@code{features} list is not significant.
@end defvar
@node Unloading
@section Unloading
@cindex unloading
@c Emacs 19 feature
You can discard the functions and variables loaded by a library to
reclaim memory for other Lisp objects. To do this, use the function
@code{unload-feature}:
@deffn Command unload-feature feature
This command unloads the library that provided feature @var{feature}.
It undefines all functions and variables defined with @code{defvar},
@code{defmacro}, @code{defconst}, @code{defsubst} and @code{defalias} by
that library. It then restores any autoloads associated with those
symbols.
@end deffn
The @code{unload-feature} function is written in Lisp; its actions are
based on the variable @code{load-history}.
@defvar load-history
This variable's value is an alist connecting library names with the
names of functions and variables they define, the features they provide,
and the features they require.
Each element is a list and describes one library. The @sc{car} of the
list is the name of the library, as a string. The rest of the list is
composed of these kinds of objects:
@itemize @bullet
@item
Symbols, which were defined as functions or variables.
@item
Lists of the form @code{(require . @var{feature})} indicating
features that were required.
@item
Lists of the form @code{(provide . @var{feature})} indicating
features that were provided.
@end itemize
The value of @code{load-history} may have one element whose @sc{car} is
@code{nil}. This element describes definitions made with
@code{eval-buffer} on a buffer that is not visiting a file.
@end defvar
The command @code{eval-region} updates @code{load-history}, but does so
by adding the symbols defined to the element for the file being visited,
rather than replacing that element.
@node Hooks for Loading
@section Hooks for Loading
@cindex loading hooks
@cindex hooks for loading
You can ask for code to be executed if and when a particular library is
loaded, by calling @code{eval-after-load}.
@defun eval-after-load library form
This function arranges to evaluate @var{form} at the end of loading the
library @var{library}, if and when @var{library} is loaded.
The library name @var{library} must exactly match the argument of
@code{load}. To get the proper results when an installed library is
found by searching @code{load-path}, you should not include any
directory names in @var{library}.
An error in @var{form} does not undo the load, but does prevent
execution of the rest of @var{form}.
@end defun
@defvar after-load-alist
An alist of expressions to evaluate if and when particular libraries are
loaded. Each element looks like this:
@example
(@var{filename} @var{forms}@dots{})
@end example
The function @code{load} checks @code{after-load-alist} in order to
implement @code{eval-after-load}.
@end defvar
@c Emacs 19 feature