Add crypto/sha256 and crypto/sha512 modules from gnulib

This commit is contained in:
Leo Liu 2011-06-21 16:45:39 +08:00
parent 327c8fb10a
commit 3ce9d0d41b
12 changed files with 1630 additions and 3 deletions

View file

@ -1,3 +1,18 @@
2011-06-21 Leo Liu <sdl.web@gmail.com>
* m4/sha256.m4:
* m4/sha512.m4:
* m4/gl-comp.m4:
* lib/u64.h:
* lib/sha256.c:
* lib/sha256.h:
* lib/sha512.c:
* lib/sha512.h:
* lib/makefile.w32-in (GNULIBOBJS):
* lib/gnulib.mk:
* Makefile.in (GNULIB_MODULES): Add crypto/sha256 and
crypto/sha512 modules from gnulib.
2011-06-19 Paul Eggert <eggert@cs.ucla.edu>
* lib/unistd.in.h, m4/getloadavg.m4: Merge from gnulib.

View file

@ -332,8 +332,8 @@ DOS_gnulib_comp.m4 = gl-comp.m4
# $(gnulib_srcdir) (relative to $(srcdir) and should have build tools
# as per $(gnulib_srcdir)/DEPENDENCIES.
GNULIB_MODULES = \
careadlinkat crypto/md5 crypto/sha1 dtoastr filemode getloadavg \
getopt-gnu ignore-value intprops lstat mktime readlink \
careadlinkat crypto/md5 crypto/sha1 crypto/sha256 crypto/sha512 dtoastr \
filemode getloadavg getopt-gnu ignore-value intprops lstat mktime readlink \
socklen stdarg stdio strftime strtoumax symlink sys_stat
GNULIB_TOOL_FLAGS = \
--conditional-dependencies --import --no-changelog --no-vc-files \

View file

@ -9,7 +9,7 @@
# the same distribution terms as the rest of that program.
#
# Generated by gnulib-tool.
# Reproduce by: gnulib-tool --import --dir=. --lib=libgnu --source-base=lib --m4-base=m4 --doc-base=doc --tests-base=tests --aux-dir=. --makefile-name=gnulib.mk --conditional-dependencies --no-libtool --macro-prefix=gl --no-vc-files careadlinkat crypto/md5 crypto/sha1 dtoastr filemode getloadavg getopt-gnu ignore-value intprops lstat mktime readlink socklen stdarg stdio strftime strtoumax symlink sys_stat
# Reproduce by: gnulib-tool --import --dir=. --lib=libgnu --source-base=lib --m4-base=m4 --doc-base=doc --tests-base=tests --aux-dir=. --makefile-name=gnulib.mk --conditional-dependencies --no-libtool --macro-prefix=gl --no-vc-files careadlinkat crypto/md5 crypto/sha1 crypto/sha256 crypto/sha512 dtoastr filemode getloadavg getopt-gnu ignore-value intprops lstat mktime readlink socklen stdarg stdio strftime strtoumax symlink sys_stat
MOSTLYCLEANFILES += core *.stackdump
@ -101,6 +101,22 @@ EXTRA_DIST += sha1.h
## end gnulib module crypto/sha1
## begin gnulib module crypto/sha256
libgnu_a_SOURCES += sha256.c
EXTRA_DIST += sha256.h
## end gnulib module crypto/sha256
## begin gnulib module crypto/sha512
libgnu_a_SOURCES += sha512.c
EXTRA_DIST += sha512.h
## end gnulib module crypto/sha512
## begin gnulib module dosname
if gl_GNULIB_ENABLED_dosname
@ -759,6 +775,13 @@ EXTRA_libgnu_a_SOURCES += time_r.c
## end gnulib module time_r
## begin gnulib module u64
EXTRA_DIST += u64.h
## end gnulib module u64
## begin gnulib module unistd
BUILT_SOURCES += unistd.h

View file

@ -30,6 +30,8 @@ GNULIBOBJS = $(BLD)/dtoastr.$(O) \
$(BLD)/time_r.$(O) \
$(BLD)/md5.$(O) \
$(BLD)/sha1.$(O) \
$(BLD)/sha256.$(O) \
$(BLD)/sha512.$(O) \
$(BLD)/filemode.$(O)
#
@ -120,6 +122,24 @@ $(BLD)/sha1.$(O) : \
$(EMACS_ROOT)/src/m/intel386.h \
$(EMACS_ROOT)/src/config.h
$(BLD)/sha256.$(O) : \
$(SRC)/sha256.c \
$(SRC)/sha256.h \
$(EMACS_ROOT)/nt/inc/stdint.h \
$(EMACS_ROOT)/nt/inc/sys/stat.h \
$(EMACS_ROOT)/src/s/ms-w32.h \
$(EMACS_ROOT)/src/m/intel386.h \
$(EMACS_ROOT)/src/config.h
$(BLD)/sha512.$(O) : \
$(SRC)/sha512.c \
$(SRC)/sha512.h \
$(EMACS_ROOT)/nt/inc/stdint.h \
$(EMACS_ROOT)/nt/inc/sys/stat.h \
$(EMACS_ROOT)/src/s/ms-w32.h \
$(EMACS_ROOT)/src/m/intel386.h \
$(EMACS_ROOT)/src/config.h
$(BLD)/filemode.$(O) : \
$(SRC)/filemode.c \
$(SRC)/filemode.h \

569
lib/sha256.c Normal file
View file

@ -0,0 +1,569 @@
/* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or
memory blocks according to the NIST specification FIPS-180-2.
Copyright (C) 2005-2006, 2008-2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by David Madore, considerably copypasting from
Scott G. Miller's sha1.c
*/
#include <config.h>
#include "sha256.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#if USE_UNLOCKED_IO
# include "unlocked-io.h"
#endif
#ifdef WORDS_BIGENDIAN
# define SWAP(n) (n)
#else
# define SWAP(n) \
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#endif
#define BLOCKSIZE 32768
#if BLOCKSIZE % 64 != 0
# error "invalid BLOCKSIZE"
#endif
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/*
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
intializes it to the start constants of the SHA256 algorithm. This
must be called before using hash in the call to sha256_hash
*/
void
sha256_init_ctx (struct sha256_ctx *ctx)
{
ctx->state[0] = 0x6a09e667UL;
ctx->state[1] = 0xbb67ae85UL;
ctx->state[2] = 0x3c6ef372UL;
ctx->state[3] = 0xa54ff53aUL;
ctx->state[4] = 0x510e527fUL;
ctx->state[5] = 0x9b05688cUL;
ctx->state[6] = 0x1f83d9abUL;
ctx->state[7] = 0x5be0cd19UL;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
}
void
sha224_init_ctx (struct sha256_ctx *ctx)
{
ctx->state[0] = 0xc1059ed8UL;
ctx->state[1] = 0x367cd507UL;
ctx->state[2] = 0x3070dd17UL;
ctx->state[3] = 0xf70e5939UL;
ctx->state[4] = 0xffc00b31UL;
ctx->state[5] = 0x68581511UL;
ctx->state[6] = 0x64f98fa7UL;
ctx->state[7] = 0xbefa4fa4UL;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
}
/* Copy the value from v into the memory location pointed to by *cp,
If your architecture allows unaligned access this is equivalent to
* (uint32_t *) cp = v */
static inline void
set_uint32 (char *cp, uint32_t v)
{
memcpy (cp, &v, sizeof v);
}
/* Put result from CTX in first 32 bytes following RESBUF. The result
must be in little endian byte order. */
void *
sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
{
int i;
char *r = resbuf;
for (i = 0; i < 8; i++)
set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
return resbuf;
}
void *
sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
{
int i;
char *r = resbuf;
for (i = 0; i < 7; i++)
set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
return resbuf;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF. */
static void
sha256_conclude_ctx (struct sha256_ctx *ctx)
{
/* Take yet unprocessed bytes into account. */
size_t bytes = ctx->buflen;
size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
++ctx->total[1];
/* Put the 64-bit file length in *bits* at the end of the buffer.
Use set_uint32 rather than a simple assignment, to avoid risk of
unaligned access. */
set_uint32 ((char *) &ctx->buffer[size - 2],
SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)));
set_uint32 ((char *) &ctx->buffer[size - 1],
SWAP (ctx->total[0] << 3));
memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
/* Process last bytes. */
sha256_process_block (ctx->buffer, size * 4, ctx);
}
void *
sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
{
sha256_conclude_ctx (ctx);
return sha256_read_ctx (ctx, resbuf);
}
void *
sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
{
sha256_conclude_ctx (ctx);
return sha224_read_ctx (ctx, resbuf);
}
/* Compute SHA256 message digest for bytes read from STREAM. The
resulting message digest number will be written into the 32 bytes
beginning at RESBLOCK. */
int
sha256_stream (FILE *stream, void *resblock)
{
struct sha256_ctx ctx;
size_t sum;
char *buffer = malloc (BLOCKSIZE + 72);
if (!buffer)
return 1;
/* Initialize the computation context. */
sha256_init_ctx (&ctx);
/* Iterate over full file contents. */
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
computation function processes the whole buffer so that with the
next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
{
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
sum += n;
if (sum == BLOCKSIZE)
break;
if (n == 0)
{
/* Check for the error flag IFF N == 0, so that we don't
exit the loop after a partial read due to e.g., EAGAIN
or EWOULDBLOCK. */
if (ferror (stream))
{
free (buffer);
return 1;
}
goto process_partial_block;
}
/* We've read at least one byte, so ignore errors. But always
check for EOF, since feof may be true even though N > 0.
Otherwise, we could end up calling fread after EOF. */
if (feof (stream))
goto process_partial_block;
}
/* Process buffer with BLOCKSIZE bytes. Note that
BLOCKSIZE % 64 == 0
*/
sha256_process_block (buffer, BLOCKSIZE, &ctx);
}
process_partial_block:;
/* Process any remaining bytes. */
if (sum > 0)
sha256_process_bytes (buffer, sum, &ctx);
/* Construct result in desired memory. */
sha256_finish_ctx (&ctx, resblock);
free (buffer);
return 0;
}
/* FIXME: Avoid code duplication */
int
sha224_stream (FILE *stream, void *resblock)
{
struct sha256_ctx ctx;
size_t sum;
char *buffer = malloc (BLOCKSIZE + 72);
if (!buffer)
return 1;
/* Initialize the computation context. */
sha224_init_ctx (&ctx);
/* Iterate over full file contents. */
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
computation function processes the whole buffer so that with the
next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
{
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
sum += n;
if (sum == BLOCKSIZE)
break;
if (n == 0)
{
/* Check for the error flag IFF N == 0, so that we don't
exit the loop after a partial read due to e.g., EAGAIN
or EWOULDBLOCK. */
if (ferror (stream))
{
free (buffer);
return 1;
}
goto process_partial_block;
}
/* We've read at least one byte, so ignore errors. But always
check for EOF, since feof may be true even though N > 0.
Otherwise, we could end up calling fread after EOF. */
if (feof (stream))
goto process_partial_block;
}
/* Process buffer with BLOCKSIZE bytes. Note that
BLOCKSIZE % 64 == 0
*/
sha256_process_block (buffer, BLOCKSIZE, &ctx);
}
process_partial_block:;
/* Process any remaining bytes. */
if (sum > 0)
sha256_process_bytes (buffer, sum, &ctx);
/* Construct result in desired memory. */
sha224_finish_ctx (&ctx, resblock);
free (buffer);
return 0;
}
/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
void *
sha256_buffer (const char *buffer, size_t len, void *resblock)
{
struct sha256_ctx ctx;
/* Initialize the computation context. */
sha256_init_ctx (&ctx);
/* Process whole buffer but last len % 64 bytes. */
sha256_process_bytes (buffer, len, &ctx);
/* Put result in desired memory area. */
return sha256_finish_ctx (&ctx, resblock);
}
void *
sha224_buffer (const char *buffer, size_t len, void *resblock)
{
struct sha256_ctx ctx;
/* Initialize the computation context. */
sha224_init_ctx (&ctx);
/* Process whole buffer but last len % 64 bytes. */
sha256_process_bytes (buffer, len, &ctx);
/* Put result in desired memory area. */
return sha224_finish_ctx (&ctx, resblock);
}
void
sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
{
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0)
{
size_t left_over = ctx->buflen;
size_t add = 128 - left_over > len ? len : 128 - left_over;
memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
ctx->buflen += add;
if (ctx->buflen > 64)
{
sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
ctx->buflen &= 63;
/* The regions in the following copy operation cannot overlap. */
memcpy (ctx->buffer,
&((char *) ctx->buffer)[(left_over + add) & ~63],
ctx->buflen);
}
buffer = (const char *) buffer + add;
len -= add;
}
/* Process available complete blocks. */
if (len >= 64)
{
#if !_STRING_ARCH_unaligned
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
if (UNALIGNED_P (buffer))
while (len > 64)
{
sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
buffer = (const char *) buffer + 64;
len -= 64;
}
else
#endif
{
sha256_process_block (buffer, len & ~63, ctx);
buffer = (const char *) buffer + (len & ~63);
len &= 63;
}
}
/* Move remaining bytes in internal buffer. */
if (len > 0)
{
size_t left_over = ctx->buflen;
memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
left_over += len;
if (left_over >= 64)
{
sha256_process_block (ctx->buffer, 64, ctx);
left_over -= 64;
memcpy (ctx->buffer, &ctx->buffer[16], left_over);
}
ctx->buflen = left_over;
}
}
/* --- Code below is the primary difference between sha1.c and sha256.c --- */
/* SHA256 round constants */
#define K(I) sha256_round_constants[I]
static const uint32_t sha256_round_constants[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL,
};
/* Round functions. */
#define F2(A,B,C) ( ( A & B ) | ( C & ( A | B ) ) )
#define F1(E,F,G) ( G ^ ( E & ( F ^ G ) ) )
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0.
Most of this code comes from GnuPG's cipher/sha1.c. */
void
sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
{
const uint32_t *words = buffer;
size_t nwords = len / sizeof (uint32_t);
const uint32_t *endp = words + nwords;
uint32_t x[16];
uint32_t a = ctx->state[0];
uint32_t b = ctx->state[1];
uint32_t c = ctx->state[2];
uint32_t d = ctx->state[3];
uint32_t e = ctx->state[4];
uint32_t f = ctx->state[5];
uint32_t g = ctx->state[6];
uint32_t h = ctx->state[7];
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] += len;
if (ctx->total[0] < len)
++ctx->total[1];
#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define S0(x) (rol(x,25)^rol(x,14)^(x>>3))
#define S1(x) (rol(x,15)^rol(x,13)^(x>>10))
#define SS0(x) (rol(x,30)^rol(x,19)^rol(x,10))
#define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7))
#define M(I) ( tm = S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] \
+ S0(x[(I-15)&0x0f]) + x[I&0x0f] \
, x[I&0x0f] = tm )
#define R(A,B,C,D,E,F,G,H,K,M) do { t0 = SS0(A) + F2(A,B,C); \
t1 = H + SS1(E) \
+ F1(E,F,G) \
+ K \
+ M; \
D += t1; H = t0 + t1; \
} while(0)
while (words < endp)
{
uint32_t tm;
uint32_t t0, t1;
int t;
/* FIXME: see sha1.c for a better implementation. */
for (t = 0; t < 16; t++)
{
x[t] = SWAP (*words);
words++;
}
R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
R( g, h, a, b, c, d, e, f, K(10), x[10] );
R( f, g, h, a, b, c, d, e, K(11), x[11] );
R( e, f, g, h, a, b, c, d, K(12), x[12] );
R( d, e, f, g, h, a, b, c, K(13), x[13] );
R( c, d, e, f, g, h, a, b, K(14), x[14] );
R( b, c, d, e, f, g, h, a, K(15), x[15] );
R( a, b, c, d, e, f, g, h, K(16), M(16) );
R( h, a, b, c, d, e, f, g, K(17), M(17) );
R( g, h, a, b, c, d, e, f, K(18), M(18) );
R( f, g, h, a, b, c, d, e, K(19), M(19) );
R( e, f, g, h, a, b, c, d, K(20), M(20) );
R( d, e, f, g, h, a, b, c, K(21), M(21) );
R( c, d, e, f, g, h, a, b, K(22), M(22) );
R( b, c, d, e, f, g, h, a, K(23), M(23) );
R( a, b, c, d, e, f, g, h, K(24), M(24) );
R( h, a, b, c, d, e, f, g, K(25), M(25) );
R( g, h, a, b, c, d, e, f, K(26), M(26) );
R( f, g, h, a, b, c, d, e, K(27), M(27) );
R( e, f, g, h, a, b, c, d, K(28), M(28) );
R( d, e, f, g, h, a, b, c, K(29), M(29) );
R( c, d, e, f, g, h, a, b, K(30), M(30) );
R( b, c, d, e, f, g, h, a, K(31), M(31) );
R( a, b, c, d, e, f, g, h, K(32), M(32) );
R( h, a, b, c, d, e, f, g, K(33), M(33) );
R( g, h, a, b, c, d, e, f, K(34), M(34) );
R( f, g, h, a, b, c, d, e, K(35), M(35) );
R( e, f, g, h, a, b, c, d, K(36), M(36) );
R( d, e, f, g, h, a, b, c, K(37), M(37) );
R( c, d, e, f, g, h, a, b, K(38), M(38) );
R( b, c, d, e, f, g, h, a, K(39), M(39) );
R( a, b, c, d, e, f, g, h, K(40), M(40) );
R( h, a, b, c, d, e, f, g, K(41), M(41) );
R( g, h, a, b, c, d, e, f, K(42), M(42) );
R( f, g, h, a, b, c, d, e, K(43), M(43) );
R( e, f, g, h, a, b, c, d, K(44), M(44) );
R( d, e, f, g, h, a, b, c, K(45), M(45) );
R( c, d, e, f, g, h, a, b, K(46), M(46) );
R( b, c, d, e, f, g, h, a, K(47), M(47) );
R( a, b, c, d, e, f, g, h, K(48), M(48) );
R( h, a, b, c, d, e, f, g, K(49), M(49) );
R( g, h, a, b, c, d, e, f, K(50), M(50) );
R( f, g, h, a, b, c, d, e, K(51), M(51) );
R( e, f, g, h, a, b, c, d, K(52), M(52) );
R( d, e, f, g, h, a, b, c, K(53), M(53) );
R( c, d, e, f, g, h, a, b, K(54), M(54) );
R( b, c, d, e, f, g, h, a, K(55), M(55) );
R( a, b, c, d, e, f, g, h, K(56), M(56) );
R( h, a, b, c, d, e, f, g, K(57), M(57) );
R( g, h, a, b, c, d, e, f, K(58), M(58) );
R( f, g, h, a, b, c, d, e, K(59), M(59) );
R( e, f, g, h, a, b, c, d, K(60), M(60) );
R( d, e, f, g, h, a, b, c, K(61), M(61) );
R( c, d, e, f, g, h, a, b, K(62), M(62) );
R( b, c, d, e, f, g, h, a, K(63), M(63) );
a = ctx->state[0] += a;
b = ctx->state[1] += b;
c = ctx->state[2] += c;
d = ctx->state[3] += d;
e = ctx->state[4] += e;
f = ctx->state[5] += f;
g = ctx->state[6] += g;
h = ctx->state[7] += h;
}
}

91
lib/sha256.h Normal file
View file

@ -0,0 +1,91 @@
/* Declarations of functions and data types used for SHA256 and SHA224 sum
library functions.
Copyright (C) 2005-2006, 2008-2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef SHA256_H
# define SHA256_H 1
# include <stdio.h>
# include <stdint.h>
# ifdef __cplusplus
extern "C" {
# endif
/* Structure to save state of computation between the single steps. */
struct sha256_ctx
{
uint32_t state[8];
uint32_t total[2];
size_t buflen;
uint32_t buffer[32];
};
enum { SHA224_DIGEST_SIZE = 224 / 8 };
enum { SHA256_DIGEST_SIZE = 256 / 8 };
/* Initialize structure containing state of computation. */
extern void sha256_init_ctx (struct sha256_ctx *ctx);
extern void sha224_init_ctx (struct sha256_ctx *ctx);
/* Starting with the result of former calls of this function (or the
initialization function update the context for the next LEN bytes
starting at BUFFER.
It is necessary that LEN is a multiple of 64!!! */
extern void sha256_process_block (const void *buffer, size_t len,
struct sha256_ctx *ctx);
/* Starting with the result of former calls of this function (or the
initialization function update the context for the next LEN bytes
starting at BUFFER.
It is NOT required that LEN is a multiple of 64. */
extern void sha256_process_bytes (const void *buffer, size_t len,
struct sha256_ctx *ctx);
/* Process the remaining bytes in the buffer and put result from CTX
in first 32 (28) bytes following RESBUF. The result is always in little
endian byte order, so that a byte-wise output yields to the wanted
ASCII representation of the message digest. */
extern void *sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf);
extern void *sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf);
/* Put result from CTX in first 32 (28) bytes following RESBUF. The result is
always in little endian byte order, so that a byte-wise output yields
to the wanted ASCII representation of the message digest. */
extern void *sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf);
extern void *sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf);
/* Compute SHA256 (SHA224) message digest for bytes read from STREAM. The
resulting message digest number will be written into the 32 (28) bytes
beginning at RESBLOCK. */
extern int sha256_stream (FILE *stream, void *resblock);
extern int sha224_stream (FILE *stream, void *resblock);
/* Compute SHA256 (SHA224) message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
extern void *sha256_buffer (const char *buffer, size_t len, void *resblock);
extern void *sha224_buffer (const char *buffer, size_t len, void *resblock);
# ifdef __cplusplus
}
# endif
#endif

619
lib/sha512.c Normal file
View file

@ -0,0 +1,619 @@
/* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
memory blocks according to the NIST specification FIPS-180-2.
Copyright (C) 2005-2006, 2008-2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by David Madore, considerably copypasting from
Scott G. Miller's sha1.c
*/
#include <config.h>
#include "sha512.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#if USE_UNLOCKED_IO
# include "unlocked-io.h"
#endif
#ifdef WORDS_BIGENDIAN
# define SWAP(n) (n)
#else
# define SWAP(n) \
u64or (u64or (u64or (u64shl (n, 56), \
u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \
u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \
u64shl (u64and (n, u64lo (0xff000000)), 8))), \
u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \
u64and (u64shr (n, 24), u64lo (0x00ff0000))), \
u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \
u64shr (n, 56))))
#endif
#define BLOCKSIZE 32768
#if BLOCKSIZE % 128 != 0
# error "invalid BLOCKSIZE"
#endif
/* This array contains the bytes used to pad the buffer to the next
128-byte boundary. */
static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
/*
Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
intializes it to the start constants of the SHA512 algorithm. This
must be called before using hash in the call to sha512_hash
*/
void
sha512_init_ctx (struct sha512_ctx *ctx)
{
ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
ctx->total[0] = ctx->total[1] = u64lo (0);
ctx->buflen = 0;
}
void
sha384_init_ctx (struct sha512_ctx *ctx)
{
ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
ctx->total[0] = ctx->total[1] = u64lo (0);
ctx->buflen = 0;
}
/* Copy the value from V into the memory location pointed to by *CP,
If your architecture allows unaligned access, this is equivalent to
* (__typeof__ (v) *) cp = v */
static inline void
set_uint64 (char *cp, u64 v)
{
memcpy (cp, &v, sizeof v);
}
/* Put result from CTX in first 64 bytes following RESBUF.
The result must be in little endian byte order. */
void *
sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
{
int i;
char *r = resbuf;
for (i = 0; i < 8; i++)
set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
return resbuf;
}
void *
sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
{
int i;
char *r = resbuf;
for (i = 0; i < 6; i++)
set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
return resbuf;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF. */
static void
sha512_conclude_ctx (struct sha512_ctx *ctx)
{
/* Take yet unprocessed bytes into account. */
size_t bytes = ctx->buflen;
size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
/* Now count remaining bytes. */
ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
if (u64lt (ctx->total[0], u64lo (bytes)))
ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
/* Put the 128-bit file length in *bits* at the end of the buffer.
Use set_uint64 rather than a simple assignment, to avoid risk of
unaligned access. */
set_uint64 ((char *) &ctx->buffer[size - 2],
SWAP (u64or (u64shl (ctx->total[1], 3),
u64shr (ctx->total[0], 61))));
set_uint64 ((char *) &ctx->buffer[size - 1],
SWAP (u64shl (ctx->total[0], 3)));
memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
/* Process last bytes. */
sha512_process_block (ctx->buffer, size * 8, ctx);
}
void *
sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
{
sha512_conclude_ctx (ctx);
return sha512_read_ctx (ctx, resbuf);
}
void *
sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
{
sha512_conclude_ctx (ctx);
return sha384_read_ctx (ctx, resbuf);
}
/* Compute SHA512 message digest for bytes read from STREAM. The
resulting message digest number will be written into the 64 bytes
beginning at RESBLOCK. */
int
sha512_stream (FILE *stream, void *resblock)
{
struct sha512_ctx ctx;
size_t sum;
char *buffer = malloc (BLOCKSIZE + 72);
if (!buffer)
return 1;
/* Initialize the computation context. */
sha512_init_ctx (&ctx);
/* Iterate over full file contents. */
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
computation function processes the whole buffer so that with the
next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
{
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
sum += n;
if (sum == BLOCKSIZE)
break;
if (n == 0)
{
/* Check for the error flag IFF N == 0, so that we don't
exit the loop after a partial read due to e.g., EAGAIN
or EWOULDBLOCK. */
if (ferror (stream))
{
free (buffer);
return 1;
}
goto process_partial_block;
}
/* We've read at least one byte, so ignore errors. But always
check for EOF, since feof may be true even though N > 0.
Otherwise, we could end up calling fread after EOF. */
if (feof (stream))
goto process_partial_block;
}
/* Process buffer with BLOCKSIZE bytes. Note that
BLOCKSIZE % 128 == 0
*/
sha512_process_block (buffer, BLOCKSIZE, &ctx);
}
process_partial_block:;
/* Process any remaining bytes. */
if (sum > 0)
sha512_process_bytes (buffer, sum, &ctx);
/* Construct result in desired memory. */
sha512_finish_ctx (&ctx, resblock);
free (buffer);
return 0;
}
/* FIXME: Avoid code duplication */
int
sha384_stream (FILE *stream, void *resblock)
{
struct sha512_ctx ctx;
size_t sum;
char *buffer = malloc (BLOCKSIZE + 72);
if (!buffer)
return 1;
/* Initialize the computation context. */
sha384_init_ctx (&ctx);
/* Iterate over full file contents. */
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
computation function processes the whole buffer so that with the
next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
{
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
sum += n;
if (sum == BLOCKSIZE)
break;
if (n == 0)
{
/* Check for the error flag IFF N == 0, so that we don't
exit the loop after a partial read due to e.g., EAGAIN
or EWOULDBLOCK. */
if (ferror (stream))
{
free (buffer);
return 1;
}
goto process_partial_block;
}
/* We've read at least one byte, so ignore errors. But always
check for EOF, since feof may be true even though N > 0.
Otherwise, we could end up calling fread after EOF. */
if (feof (stream))
goto process_partial_block;
}
/* Process buffer with BLOCKSIZE bytes. Note that
BLOCKSIZE % 128 == 0
*/
sha512_process_block (buffer, BLOCKSIZE, &ctx);
}
process_partial_block:;
/* Process any remaining bytes. */
if (sum > 0)
sha512_process_bytes (buffer, sum, &ctx);
/* Construct result in desired memory. */
sha384_finish_ctx (&ctx, resblock);
free (buffer);
return 0;
}
/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
void *
sha512_buffer (const char *buffer, size_t len, void *resblock)
{
struct sha512_ctx ctx;
/* Initialize the computation context. */
sha512_init_ctx (&ctx);
/* Process whole buffer but last len % 128 bytes. */
sha512_process_bytes (buffer, len, &ctx);
/* Put result in desired memory area. */
return sha512_finish_ctx (&ctx, resblock);
}
void *
sha384_buffer (const char *buffer, size_t len, void *resblock)
{
struct sha512_ctx ctx;
/* Initialize the computation context. */
sha384_init_ctx (&ctx);
/* Process whole buffer but last len % 128 bytes. */
sha512_process_bytes (buffer, len, &ctx);
/* Put result in desired memory area. */
return sha384_finish_ctx (&ctx, resblock);
}
void
sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
{
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0)
{
size_t left_over = ctx->buflen;
size_t add = 256 - left_over > len ? len : 256 - left_over;
memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
ctx->buflen += add;
if (ctx->buflen > 128)
{
sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
ctx->buflen &= 127;
/* The regions in the following copy operation cannot overlap. */
memcpy (ctx->buffer,
&((char *) ctx->buffer)[(left_over + add) & ~127],
ctx->buflen);
}
buffer = (const char *) buffer + add;
len -= add;
}
/* Process available complete blocks. */
if (len >= 128)
{
#if !_STRING_ARCH_unaligned
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define UNALIGNED_P(p) (((size_t) p) % alignof (u64) != 0)
if (UNALIGNED_P (buffer))
while (len > 128)
{
sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
buffer = (const char *) buffer + 128;
len -= 128;
}
else
#endif
{
sha512_process_block (buffer, len & ~127, ctx);
buffer = (const char *) buffer + (len & ~127);
len &= 127;
}
}
/* Move remaining bytes in internal buffer. */
if (len > 0)
{
size_t left_over = ctx->buflen;
memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
left_over += len;
if (left_over >= 128)
{
sha512_process_block (ctx->buffer, 128, ctx);
left_over -= 128;
memcpy (ctx->buffer, &ctx->buffer[16], left_over);
}
ctx->buflen = left_over;
}
}
/* --- Code below is the primary difference between sha1.c and sha512.c --- */
/* SHA512 round constants */
#define K(I) sha512_round_constants[I]
static u64 const sha512_round_constants[80] = {
u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
};
/* Round functions. */
#define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
#define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 128 == 0.
Most of this code comes from GnuPG's cipher/sha1.c. */
void
sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
{
u64 const *words = buffer;
u64 const *endp = words + len / sizeof (u64);
u64 x[16];
u64 a = ctx->state[0];
u64 b = ctx->state[1];
u64 c = ctx->state[2];
u64 d = ctx->state[3];
u64 e = ctx->state[4];
u64 f = ctx->state[5];
u64 g = ctx->state[6];
u64 h = ctx->state[7];
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
length of the file up to 2^128 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] = u64plus (ctx->total[0], u64lo (len));
if (u64lt (ctx->total[0], u64lo (len)))
ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
#define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
#define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
#define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
#define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
#define M(I) (x[(I) & 15] \
= u64plus (x[(I) & 15], \
u64plus (S1 (x[((I) - 2) & 15]), \
u64plus (x[((I) - 7) & 15], \
S0 (x[((I) - 15) & 15])))))
#define R(A, B, C, D, E, F, G, H, K, M) \
do \
{ \
u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \
u64 t1 = \
u64plus (H, u64plus (SS1 (E), \
u64plus (F1 (E, F, G), u64plus (K, M)))); \
D = u64plus (D, t1); \
H = u64plus (t0, t1); \
} \
while (0)
while (words < endp)
{
int t;
/* FIXME: see sha1.c for a better implementation. */
for (t = 0; t < 16; t++)
{
x[t] = SWAP (*words);
words++;
}
R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
R( g, h, a, b, c, d, e, f, K(10), x[10] );
R( f, g, h, a, b, c, d, e, K(11), x[11] );
R( e, f, g, h, a, b, c, d, K(12), x[12] );
R( d, e, f, g, h, a, b, c, K(13), x[13] );
R( c, d, e, f, g, h, a, b, K(14), x[14] );
R( b, c, d, e, f, g, h, a, K(15), x[15] );
R( a, b, c, d, e, f, g, h, K(16), M(16) );
R( h, a, b, c, d, e, f, g, K(17), M(17) );
R( g, h, a, b, c, d, e, f, K(18), M(18) );
R( f, g, h, a, b, c, d, e, K(19), M(19) );
R( e, f, g, h, a, b, c, d, K(20), M(20) );
R( d, e, f, g, h, a, b, c, K(21), M(21) );
R( c, d, e, f, g, h, a, b, K(22), M(22) );
R( b, c, d, e, f, g, h, a, K(23), M(23) );
R( a, b, c, d, e, f, g, h, K(24), M(24) );
R( h, a, b, c, d, e, f, g, K(25), M(25) );
R( g, h, a, b, c, d, e, f, K(26), M(26) );
R( f, g, h, a, b, c, d, e, K(27), M(27) );
R( e, f, g, h, a, b, c, d, K(28), M(28) );
R( d, e, f, g, h, a, b, c, K(29), M(29) );
R( c, d, e, f, g, h, a, b, K(30), M(30) );
R( b, c, d, e, f, g, h, a, K(31), M(31) );
R( a, b, c, d, e, f, g, h, K(32), M(32) );
R( h, a, b, c, d, e, f, g, K(33), M(33) );
R( g, h, a, b, c, d, e, f, K(34), M(34) );
R( f, g, h, a, b, c, d, e, K(35), M(35) );
R( e, f, g, h, a, b, c, d, K(36), M(36) );
R( d, e, f, g, h, a, b, c, K(37), M(37) );
R( c, d, e, f, g, h, a, b, K(38), M(38) );
R( b, c, d, e, f, g, h, a, K(39), M(39) );
R( a, b, c, d, e, f, g, h, K(40), M(40) );
R( h, a, b, c, d, e, f, g, K(41), M(41) );
R( g, h, a, b, c, d, e, f, K(42), M(42) );
R( f, g, h, a, b, c, d, e, K(43), M(43) );
R( e, f, g, h, a, b, c, d, K(44), M(44) );
R( d, e, f, g, h, a, b, c, K(45), M(45) );
R( c, d, e, f, g, h, a, b, K(46), M(46) );
R( b, c, d, e, f, g, h, a, K(47), M(47) );
R( a, b, c, d, e, f, g, h, K(48), M(48) );
R( h, a, b, c, d, e, f, g, K(49), M(49) );
R( g, h, a, b, c, d, e, f, K(50), M(50) );
R( f, g, h, a, b, c, d, e, K(51), M(51) );
R( e, f, g, h, a, b, c, d, K(52), M(52) );
R( d, e, f, g, h, a, b, c, K(53), M(53) );
R( c, d, e, f, g, h, a, b, K(54), M(54) );
R( b, c, d, e, f, g, h, a, K(55), M(55) );
R( a, b, c, d, e, f, g, h, K(56), M(56) );
R( h, a, b, c, d, e, f, g, K(57), M(57) );
R( g, h, a, b, c, d, e, f, K(58), M(58) );
R( f, g, h, a, b, c, d, e, K(59), M(59) );
R( e, f, g, h, a, b, c, d, K(60), M(60) );
R( d, e, f, g, h, a, b, c, K(61), M(61) );
R( c, d, e, f, g, h, a, b, K(62), M(62) );
R( b, c, d, e, f, g, h, a, K(63), M(63) );
R( a, b, c, d, e, f, g, h, K(64), M(64) );
R( h, a, b, c, d, e, f, g, K(65), M(65) );
R( g, h, a, b, c, d, e, f, K(66), M(66) );
R( f, g, h, a, b, c, d, e, K(67), M(67) );
R( e, f, g, h, a, b, c, d, K(68), M(68) );
R( d, e, f, g, h, a, b, c, K(69), M(69) );
R( c, d, e, f, g, h, a, b, K(70), M(70) );
R( b, c, d, e, f, g, h, a, K(71), M(71) );
R( a, b, c, d, e, f, g, h, K(72), M(72) );
R( h, a, b, c, d, e, f, g, K(73), M(73) );
R( g, h, a, b, c, d, e, f, K(74), M(74) );
R( f, g, h, a, b, c, d, e, K(75), M(75) );
R( e, f, g, h, a, b, c, d, K(76), M(76) );
R( d, e, f, g, h, a, b, c, K(77), M(77) );
R( c, d, e, f, g, h, a, b, K(78), M(78) );
R( b, c, d, e, f, g, h, a, K(79), M(79) );
a = ctx->state[0] = u64plus (ctx->state[0], a);
b = ctx->state[1] = u64plus (ctx->state[1], b);
c = ctx->state[2] = u64plus (ctx->state[2], c);
d = ctx->state[3] = u64plus (ctx->state[3], d);
e = ctx->state[4] = u64plus (ctx->state[4], e);
f = ctx->state[5] = u64plus (ctx->state[5], f);
g = ctx->state[6] = u64plus (ctx->state[6], g);
h = ctx->state[7] = u64plus (ctx->state[7], h);
}
}

95
lib/sha512.h Normal file
View file

@ -0,0 +1,95 @@
/* Declarations of functions and data types used for SHA512 and SHA384 sum
library functions.
Copyright (C) 2005-2006, 2008-2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef SHA512_H
# define SHA512_H 1
# include <stdio.h>
# include "u64.h"
# ifdef __cplusplus
extern "C" {
# endif
/* Structure to save state of computation between the single steps. */
struct sha512_ctx
{
u64 state[8];
u64 total[2];
size_t buflen;
u64 buffer[32];
};
enum { SHA384_DIGEST_SIZE = 384 / 8 };
enum { SHA512_DIGEST_SIZE = 512 / 8 };
/* Initialize structure containing state of computation. */
extern void sha512_init_ctx (struct sha512_ctx *ctx);
extern void sha384_init_ctx (struct sha512_ctx *ctx);
/* Starting with the result of former calls of this function (or the
initialization function update the context for the next LEN bytes
starting at BUFFER.
It is necessary that LEN is a multiple of 128!!! */
extern void sha512_process_block (const void *buffer, size_t len,
struct sha512_ctx *ctx);
/* Starting with the result of former calls of this function (or the
initialization function update the context for the next LEN bytes
starting at BUFFER.
It is NOT required that LEN is a multiple of 128. */
extern void sha512_process_bytes (const void *buffer, size_t len,
struct sha512_ctx *ctx);
/* Process the remaining bytes in the buffer and put result from CTX
in first 64 (48) bytes following RESBUF. The result is always in little
endian byte order, so that a byte-wise output yields to the wanted
ASCII representation of the message digest. */
extern void *sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf);
extern void *sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf);
/* Put result from CTX in first 64 (48) bytes following RESBUF. The result is
always in little endian byte order, so that a byte-wise output yields
to the wanted ASCII representation of the message digest.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
extern void *sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf);
extern void *sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf);
/* Compute SHA512 (SHA384) message digest for bytes read from STREAM. The
resulting message digest number will be written into the 64 (48) bytes
beginning at RESBLOCK. */
extern int sha512_stream (FILE *stream, void *resblock);
extern int sha384_stream (FILE *stream, void *resblock);
/* Compute SHA512 (SHA384) message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
extern void *sha512_buffer (const char *buffer, size_t len, void *resblock);
extern void *sha384_buffer (const char *buffer, size_t len, void *resblock);
# ifdef __cplusplus
}
# endif
#endif

158
lib/u64.h Normal file
View file

@ -0,0 +1,158 @@
/* uint64_t-like operations that work even on hosts lacking uint64_t
Copyright (C) 2006, 2009-2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by Paul Eggert. */
#include <stdint.h>
/* Return X rotated left by N bits, where 0 < N < 64. */
#define u64rol(x, n) u64or (u64shl (x, n), u64shr (x, 64 - n))
#ifdef UINT64_MAX
/* Native implementations are trivial. See below for comments on what
these operations do. */
typedef uint64_t u64;
# define u64hilo(hi, lo) ((u64) (((u64) (hi) << 32) + (lo)))
# define u64init(hi, lo) u64hilo (hi, lo)
# define u64lo(x) ((u64) (x))
# define u64lt(x, y) ((x) < (y))
# define u64and(x, y) ((x) & (y))
# define u64or(x, y) ((x) | (y))
# define u64xor(x, y) ((x) ^ (y))
# define u64plus(x, y) ((x) + (y))
# define u64shl(x, n) ((x) << (n))
# define u64shr(x, n) ((x) >> (n))
#else
/* u64 is a 64-bit unsigned integer value.
u64init (HI, LO), is like u64hilo (HI, LO), but for use in
initializer contexts. */
# ifdef WORDS_BIGENDIAN
typedef struct { uint32_t hi, lo; } u64;
# define u64init(hi, lo) { hi, lo }
# else
typedef struct { uint32_t lo, hi; } u64;
# define u64init(hi, lo) { lo, hi }
# endif
/* Given the high and low-order 32-bit quantities HI and LO, return a u64
value representing (HI << 32) + LO. */
static inline u64
u64hilo (uint32_t hi, uint32_t lo)
{
u64 r;
r.hi = hi;
r.lo = lo;
return r;
}
/* Return a u64 value representing LO. */
static inline u64
u64lo (uint32_t lo)
{
u64 r;
r.hi = 0;
r.lo = lo;
return r;
}
/* Return X < Y. */
static inline int
u64lt (u64 x, u64 y)
{
return x.hi < y.hi || (x.hi == y.hi && x.lo < y.lo);
}
/* Return X & Y. */
static inline u64
u64and (u64 x, u64 y)
{
u64 r;
r.hi = x.hi & y.hi;
r.lo = x.lo & y.lo;
return r;
}
/* Return X | Y. */
static inline u64
u64or (u64 x, u64 y)
{
u64 r;
r.hi = x.hi | y.hi;
r.lo = x.lo | y.lo;
return r;
}
/* Return X ^ Y. */
static inline u64
u64xor (u64 x, u64 y)
{
u64 r;
r.hi = x.hi ^ y.hi;
r.lo = x.lo ^ y.lo;
return r;
}
/* Return X + Y. */
static inline u64
u64plus (u64 x, u64 y)
{
u64 r;
r.lo = x.lo + y.lo;
r.hi = x.hi + y.hi + (r.lo < x.lo);
return r;
}
/* Return X << N. */
static inline u64
u64shl (u64 x, int n)
{
u64 r;
if (n < 32)
{
r.hi = (x.hi << n) | (x.lo >> (32 - n));
r.lo = x.lo << n;
}
else
{
r.hi = x.lo << (n - 32);
r.lo = 0;
}
return r;
}
/* Return X >> N. */
static inline u64
u64shr (u64 x, int n)
{
u64 r;
if (n < 32)
{
r.hi = x.hi >> n;
r.lo = (x.hi << (32 - n)) | (x.lo >> n);
}
else
{
r.hi = 0;
r.lo = x.hi >> (n - 32);
}
return r;
}
#endif

View file

@ -32,6 +32,8 @@ AC_DEFUN([gl_EARLY],
# Code from module careadlinkat:
# Code from module crypto/md5:
# Code from module crypto/sha1:
# Code from module crypto/sha256:
# Code from module crypto/sha512:
# Code from module dosname:
# Code from module dtoastr:
# Code from module extensions:
@ -70,6 +72,7 @@ AC_DEFUN([gl_EARLY],
# Code from module sys_stat:
# Code from module time:
# Code from module time_r:
# Code from module u64:
# Code from module unistd:
# Code from module verify:
# Code from module warn-on-use:
@ -94,6 +97,8 @@ AC_DEFUN([gl_INIT],
AC_CHECK_FUNCS_ONCE([readlinkat])
gl_MD5
gl_SHA1
gl_SHA256
gl_SHA512
AC_REQUIRE([gl_C99_STRTOLD])
gl_FILEMODE
gl_GETLOADAVG
@ -165,6 +170,7 @@ if test $HAVE_LOCALTIME_R = 0 || test $REPLACE_LOCALTIME_R = 1; then
gl_PREREQ_TIME_R
fi
gl_TIME_MODULE_INDICATOR([time_r])
AC_REQUIRE([AC_C_INLINE])
gl_UNISTD_H
gl_gnulib_enabled_dosname=false
gl_gnulib_enabled_be453cec5eecf5731a274f2de7f2db36=false
@ -413,6 +419,10 @@ AC_DEFUN([gl_FILE_LIST], [
lib/readlink.c
lib/sha1.c
lib/sha1.h
lib/sha256.c
lib/sha256.h
lib/sha512.c
lib/sha512.h
lib/stat.c
lib/stdarg.in.h
lib/stdbool.in.h
@ -431,6 +441,7 @@ AC_DEFUN([gl_FILE_LIST], [
lib/sys_stat.in.h
lib/time.in.h
lib/time_r.c
lib/u64.h
lib/unistd.in.h
lib/verify.h
m4/00gnulib.m4
@ -449,6 +460,8 @@ AC_DEFUN([gl_FILE_LIST], [
m4/multiarch.m4
m4/readlink.m4
m4/sha1.m4
m4/sha256.m4
m4/sha512.m4
m4/socklen.m4
m4/ssize_t.m4
m4/st_dm_mode.m4

12
m4/sha256.m4 Normal file
View file

@ -0,0 +1,12 @@
# sha256.m4 serial 5
dnl Copyright (C) 2005, 2008-2011 Free Software Foundation, Inc.
dnl This file is free software; the Free Software Foundation
dnl gives unlimited permission to copy and/or distribute it,
dnl with or without modifications, as long as this notice is preserved.
AC_DEFUN([gl_SHA256],
[
dnl Prerequisites of lib/sha256.c.
AC_REQUIRE([gl_BIGENDIAN])
AC_REQUIRE([AC_C_INLINE])
])

12
m4/sha512.m4 Normal file
View file

@ -0,0 +1,12 @@
# sha512.m4 serial 6
dnl Copyright (C) 2005-2006, 2008-2011 Free Software Foundation, Inc.
dnl This file is free software; the Free Software Foundation
dnl gives unlimited permission to copy and/or distribute it,
dnl with or without modifications, as long as this notice is preserved.
AC_DEFUN([gl_SHA512],
[
dnl Prerequisites of lib/sha512.c.
AC_REQUIRE([gl_BIGENDIAN])
AC_REQUIRE([AC_C_INLINE])
])