calc.texi: Remove "\turnoffactive" commands throughout.
This commit is contained in:
parent
2ef3c1449c
commit
14914c4314
2 changed files with 4 additions and 43 deletions
|
@ -1,3 +1,7 @@
|
|||
2010-05-13 Jay Belanger <jay.p.belanger@gmail.com>
|
||||
|
||||
* calc.texi: Remove "\turnoffactive" commands througout.
|
||||
|
||||
2010-05-08 Štěpán Němec <stepnem@gmail.com> (tiny change)
|
||||
|
||||
* url.texi (HTTP language/coding, Customization):
|
||||
|
|
|
@ -76,7 +76,6 @@
|
|||
@newcount@calcpageno
|
||||
@newtoks@calcoldeverypar @calcoldeverypar=@everypar
|
||||
@everypar={@calceverypar@the@calcoldeverypar}
|
||||
@ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
|
||||
@ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
|
||||
@catcode`@\=0 \catcode`\@=11
|
||||
\r@ggedbottomtrue
|
||||
|
@ -1804,7 +1803,6 @@ or, in large mathematical notation,
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
|
||||
\afterdisplay
|
||||
|
@ -3358,7 +3356,6 @@ Suppose we had the following set of equations:
|
|||
@end group
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplayh
|
||||
$$ \openup1\jot \tabskip=0pt plus1fil
|
||||
\halign to\displaywidth{\tabskip=0pt
|
||||
|
@ -3385,7 +3382,6 @@ This can be cast into the matrix equation,
|
|||
@end group
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
|
||||
\times
|
||||
|
@ -3457,7 +3453,6 @@ in terms of @expr{a} and @expr{b}.
|
|||
@end group
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \eqalign{ x &+ a y = 6 \cr
|
||||
x &+ b y = 10}
|
||||
|
@ -3483,7 +3478,6 @@ on the left by the transpose of @expr{A}:
|
|||
@samp{trn(A)*A*X = trn(A)*B}.
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
$A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
|
||||
@end tex
|
||||
Now
|
||||
|
@ -3506,7 +3500,6 @@ system:
|
|||
@end group
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplayh
|
||||
$$ \openup1\jot \tabskip=0pt plus1fil
|
||||
\halign to\displaywidth{\tabskip=0pt
|
||||
|
@ -3778,7 +3771,6 @@ m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ m = {N \sum x y - \sum x \sum y \over
|
||||
N \sum x^2 - \left( \sum x \right)^2} $$
|
||||
|
@ -3820,7 +3812,6 @@ respectively. (We could have used @kbd{*} to compute @samp{sum(x^2)} and
|
|||
@samp{sum(x y)}.)
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
|
||||
respectively. (We could have used \kbd{*} to compute $\sum x^2$ and
|
||||
$\sum x y$.)
|
||||
|
@ -3874,7 +3865,6 @@ b = (sum(y) - m sum(x)) / N
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ b = {\sum y - m \sum x \over N} $$
|
||||
\afterdisplay
|
||||
|
@ -5223,7 +5213,6 @@ down to the formula,
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \displaylines{
|
||||
\qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
|
||||
|
@ -5245,7 +5234,6 @@ h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
|
||||
+ f(a+(n-2)h) + f(a+(n-1)h)) $$
|
||||
|
@ -5686,7 +5674,6 @@ cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
|
||||
\afterdisplay
|
||||
|
@ -5704,7 +5691,6 @@ cos(x) = 1 - x^2 / 2! + O(x^3)
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
|
||||
\afterdisplay
|
||||
|
@ -6336,7 +6322,6 @@ s(n+1,m) = s(n,m-1) - n s(n,m) for n >= m >= 1.
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \eqalign{ s(n,n) &= 1 \qquad \hbox{for } n \ge 0, \cr
|
||||
s(n,0) &= 0 \qquad \hbox{for } n > 0, \cr
|
||||
|
@ -6875,7 +6860,6 @@ get the row sum. Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \eqalign{ x &+ a y = 6 \cr
|
||||
x &+ b y = 10}
|
||||
|
@ -6939,7 +6923,6 @@ which we can solve using Calc's @samp{/} command.
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplayh
|
||||
$$ \openup1\jot \tabskip=0pt plus1fil
|
||||
\halign to\displaywidth{\tabskip=0pt
|
||||
|
@ -7074,7 +7057,6 @@ the first job is to form the matrix that describes the problem.
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ m \times x + b \times 1 = y $$
|
||||
\afterdisplay
|
||||
|
@ -7865,7 +7847,6 @@ So the result when we take the modulo after every step is,
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ 3 (3 a + b - 511 m) + c - 511 n $$
|
||||
\afterdisplay
|
||||
|
@ -7881,7 +7862,6 @@ the distributive law yields
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ 9 a + 3 b + c - 511\times3 m - 511 n $$
|
||||
\afterdisplay
|
||||
|
@ -7899,7 +7879,6 @@ term. So we can take it out to get an equivalent formula with
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ 9 a + 3 b + c - 511 n^{\prime} $$
|
||||
\afterdisplay
|
||||
|
@ -14408,7 +14387,6 @@ $$ \sin\left( a^2 \over b_i \right) $$
|
|||
@end group
|
||||
@end example
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
|
||||
@end tex
|
||||
@sp 1
|
||||
|
@ -14434,7 +14412,6 @@ $$ [|a|, \left| a \over b \right|,
|
|||
@end group
|
||||
@end example
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
|
||||
@end tex
|
||||
@sp 2
|
||||
|
@ -14467,7 +14444,6 @@ First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
|
|||
@end group
|
||||
@end example
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ 2 + 3 \to 5 $$
|
||||
$$ 5 $$
|
||||
@end tex
|
||||
|
@ -14482,7 +14458,6 @@ First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
|
|||
@end group
|
||||
@end example
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
|
||||
{\let\to\Rightarrow
|
||||
$$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
|
||||
|
@ -14499,7 +14474,6 @@ Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
|
|||
@end group
|
||||
@end example
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
|
||||
$$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
|
||||
@end tex
|
||||
|
@ -17935,7 +17909,6 @@ ddb(cost, salv, life, per) = --------, book = cost - depreciation so far
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
|
||||
$$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
|
||||
$$ \code{fvl}(r, n, p) = p (1 + r)^n $$
|
||||
|
@ -18591,7 +18564,6 @@ letter gamma). You can obtain these using the @kbd{H f G} [@code{gammag}]
|
|||
and @kbd{H I f G} [@code{gammaG}] commands.
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
The functions corresponding to the integrals that define $P(a,x)$
|
||||
and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
|
||||
factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
|
||||
|
@ -20559,7 +20531,6 @@ this is the weighted mean of the @expr{x} values with weights
|
|||
@texline @math{1 /\sigma^2}.
|
||||
@infoline @expr{1 / s^2}.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
|
||||
\displaystyle \sum { 1 \over \sigma_i^2 } } $$
|
||||
@end tex
|
||||
|
@ -20593,7 +20564,6 @@ root of the reciprocal of the sum of the reciprocals of the squares
|
|||
of the input errors. (I.e., the variance is the reciprocal of the
|
||||
sum of the reciprocals of the variances.)
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
|
||||
@end tex
|
||||
If the inputs are plain
|
||||
|
@ -20603,7 +20573,6 @@ out to be equivalent to calculating the standard deviation and
|
|||
then assuming each value's error is equal to this standard
|
||||
deviation.)
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \sigma_\mu^2 = {\sigma^2 \over N} $$
|
||||
@end tex
|
||||
|
||||
|
@ -20636,7 +20605,6 @@ command computes the harmonic mean of the data values. This is
|
|||
defined as the reciprocal of the arithmetic mean of the reciprocals
|
||||
of the values.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ { N \over \displaystyle \sum {1 \over x_i} } $$
|
||||
@end tex
|
||||
|
||||
|
@ -20650,7 +20618,6 @@ is the @var{n}th root of the product of the values. This is also
|
|||
equal to the @code{exp} of the arithmetic mean of the logarithms
|
||||
of the data values.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \exp \left ( \sum { \ln x_i } \right ) =
|
||||
\left ( \prod { x_i } \right)^{1 / N} $$
|
||||
@end tex
|
||||
|
@ -20662,7 +20629,6 @@ mean'' of two numbers taken from the stack. This is computed by
|
|||
replacing the two numbers with their arithmetic mean and geometric
|
||||
mean, then repeating until the two values converge.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
|
||||
@end tex
|
||||
|
||||
|
@ -20685,7 +20651,6 @@ deviation, whose value is the square root of the sum of the squares of
|
|||
the differences between the values and the mean of the @expr{N} values,
|
||||
divided by @expr{N-1}.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
|
||||
@end tex
|
||||
|
||||
|
@ -20712,7 +20677,6 @@ is used when the input represents a sample of the set of all
|
|||
data values, so that the mean computed from the input is itself
|
||||
only an estimate of the true mean.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
|
||||
@end tex
|
||||
|
||||
|
@ -20777,7 +20741,6 @@ are composed of error forms, the error for a given data point
|
|||
is taken as the square root of the sum of the squares of the two
|
||||
input errors.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
|
||||
$$ \sigma_{x\!y}^2 =
|
||||
{\displaystyle {1 \over N-1}
|
||||
|
@ -20805,7 +20768,6 @@ This is defined by the covariance of the vectors divided by the
|
|||
product of their standard deviations. (There is no difference
|
||||
between sample or population statistics here.)
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
|
||||
@end tex
|
||||
|
||||
|
@ -24361,8 +24323,6 @@ For example, suppose the data matrix
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr
|
||||
5 & 7 & 9 & 11 & 13 }
|
||||
|
@ -24422,7 +24382,6 @@ chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
|
||||
\afterdisplay
|
||||
|
@ -24613,7 +24572,6 @@ chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
|
|||
@end example
|
||||
@end ifnottex
|
||||
@tex
|
||||
\turnoffactive
|
||||
\beforedisplay
|
||||
$$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
|
||||
\afterdisplay
|
||||
|
@ -25388,7 +25346,6 @@ any later ones are answered by reading additional elements from
|
|||
the stack. Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
|
||||
produces the result 55.
|
||||
@tex
|
||||
\turnoffactive
|
||||
$$ \sum_{k=1}^5 k^2 = 55 $$
|
||||
@end tex
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue