emacs/lisp/emacs-lisp/avl-tree.el

543 lines
18 KiB
EmacsLisp
Raw Normal View History

;;; avl-tree.el --- balanced binary trees, AVL-trees
;; Copyright (C) 1995, 2007 Free Software Foundation, Inc.
;; Author: Per Cederqvist <ceder@lysator.liu.se>
;; Inge Wallin <inge@lysator.liu.se>
;; Thomas Bellman <bellman@lysator.liu.se>
;; Maintainer: FSF
;; Created: 10 May 1991
;; Keywords: extensions, data structures
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;;; Commentary:
;; This file combines elib-node.el and avltree.el from Elib.
;;
;; * Comments from elib-node.el
;; A node is implemented as an array with three elements, using
;; (elt node 0) as the left pointer
;; (elt node 1) as the right pointer
;; (elt node 2) as the data
;;
;; Some types of trees, e.g. AVL trees, need bigger nodes, but
;; as long as the first three parts are the left pointer, the
;; right pointer and the data field, these macros can be used.
;;
;; * Comments from avltree.el
;; An AVL tree is a nearly-perfect balanced binary tree. A tree
;; consists of two cons cells, the first one holding the tag
;; 'AVL-TREE in the car cell, and the second one having the tree
;; in the car and the compare function in the cdr cell. The tree has
;; a dummy node as its root with the real tree in the left pointer.
;;
;; Each node of the tree consists of one data element, one left
;; sub-tree and one right sub-tree. Each node also has a balance
;; count, which is the difference in depth of the left and right
;; sub-trees.
;;; Code:
;;; ================================================================
;;; Functions and macros handling an AVL tree node.
(defmacro avl-tree-node-create (left right data balance)
;; Create and return an avl-tree node.
`(vector ,left ,right ,data ,balance))
(defmacro avl-tree-node-left (node)
;; Return the left pointer of NODE.
`(aref ,node 0))
(defmacro avl-tree-node-right (node)
;; Return the right pointer of NODE.
`(aref ,node 1))
(defmacro avl-tree-node-data (node)
;; Return the data of NODE.
`(aref ,node 2))
(defmacro avl-tree-node-set-left (node newleft)
;; Set the left pointer of NODE to NEWLEFT.
`(aset ,node 0 ,newleft))
(defmacro avl-tree-node-set-right (node newright)
;; Set the right pointer of NODE to NEWRIGHT.
`(aset ,node 1 ,newright))
(defmacro avl-tree-node-set-data (node newdata)
;; Set the data of NODE to NEWDATA.
`(aset ,node 2 ,newdata))
(defmacro avl-tree-node-branch (node branch)
;; Get value of a branch of a node.
;;
;; NODE is the node, and BRANCH is the branch.
;; 0 for left pointer, 1 for right pointer and 2 for the data."
`(aref ,node ,branch))
(defmacro avl-tree-node-set-branch (node branch newval)
;; Set value of a branch of a node.
;;
;; NODE is the node, and BRANCH is the branch.
;; 0 for left pointer, 1 for the right pointer and 2 for the data.
;; NEWVAL is new value of the branch."
`(aset ,node ,branch ,newval))
(defmacro avl-tree-node-balance (node)
;; Return the balance field of a node.
`(aref ,node 3))
(defmacro avl-tree-node-set-balance (node newbal)
;; Set the balance field of a node.
`(aset ,node 3 ,newbal))
;;; ================================================================
;;; Internal functions for use in the AVL tree package
(defmacro avl-tree-root (tree)
;; Return the root node for an avl-tree. INTERNAL USE ONLY.
`(avl-tree-node-left (car (cdr ,tree))))
(defmacro avl-tree-dummyroot (tree)
;; Return the dummy node of an avl-tree. INTERNAL USE ONLY.
`(car (cdr ,tree)))
(defmacro avl-tree-cmpfun (tree)
;; Return the compare function of AVL tree TREE. INTERNAL USE ONLY.
`(cdr (cdr ,tree)))
;; ----------------------------------------------------------------
;; Deleting data
(defun avl-tree-del-balance1 (node branch)
;; Rebalance a tree and return t if the height of the tree has shrunk.
(let* ((br (avl-tree-node-branch node branch))
p1 b1 p2 b2 result)
(cond
((< (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
t)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br +1)
nil)
(t
;; Rebalance.
(setq p1 (avl-tree-node-right br)
b1 (avl-tree-node-balance p1))
(if (>= b1 0)
;; Single RR rotation.
(progn
(avl-tree-node-set-right br (avl-tree-node-left p1))
(avl-tree-node-set-left p1 br)
(if (= 0 b1)
(progn
(avl-tree-node-set-balance br +1)
(avl-tree-node-set-balance p1 -1)
(setq result nil))
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-balance p1 0)
(setq result t))
(avl-tree-node-set-branch node branch p1)
result)
;; Double RL rotation.
(setq p2 (avl-tree-node-left p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-left p1 (avl-tree-node-right p2))
(avl-tree-node-set-right p2 p1)
(avl-tree-node-set-right br (avl-tree-node-left p2))
(avl-tree-node-set-left p2 br)
(if (> b2 0)
(avl-tree-node-set-balance br -1)
(avl-tree-node-set-balance br 0))
(if (< b2 0)
(avl-tree-node-set-balance p1 +1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2)
(avl-tree-node-set-balance p2 0)
t)))))
(defun avl-tree-del-balance2 (node branch)
(let* ((br (avl-tree-node-branch node branch))
p1 b1 p2 b2 result)
(cond
((> (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
t)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br -1)
nil)
(t
;; Rebalance.
(setq p1 (avl-tree-node-left br)
b1 (avl-tree-node-balance p1))
(if (<= b1 0)
;; Single LL rotation.
(progn
(avl-tree-node-set-left br (avl-tree-node-right p1))
(avl-tree-node-set-right p1 br)
(if (= 0 b1)
(progn
(avl-tree-node-set-balance br -1)
(avl-tree-node-set-balance p1 +1)
(setq result nil))
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-balance p1 0)
(setq result t))
(avl-tree-node-set-branch node branch p1)
result)
;; Double LR rotation.
(setq p2 (avl-tree-node-right p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-right p1 (avl-tree-node-left p2))
(avl-tree-node-set-left p2 p1)
(avl-tree-node-set-left br (avl-tree-node-right p2))
(avl-tree-node-set-right p2 br)
(if (< b2 0)
(avl-tree-node-set-balance br +1)
(avl-tree-node-set-balance br 0))
(if (> b2 0)
(avl-tree-node-set-balance p1 -1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2)
(avl-tree-node-set-balance p2 0)
t)))))
(defun avl-tree-do-del-internal (node branch q)
(let* ((br (avl-tree-node-branch node branch)))
(if (avl-tree-node-right br)
(if (avl-tree-do-del-internal br +1 q)
(avl-tree-del-balance2 node branch))
(avl-tree-node-set-data q (avl-tree-node-data br))
(avl-tree-node-set-branch node branch
(avl-tree-node-left br))
t)))
(defun avl-tree-do-delete (cmpfun root branch data)
;; Return t if the height of the tree has shrunk.
(let* ((br (avl-tree-node-branch root branch)))
(cond
((null br)
nil)
((funcall cmpfun data (avl-tree-node-data br))
(if (avl-tree-do-delete cmpfun br 0 data)
(avl-tree-del-balance1 root branch)))
((funcall cmpfun (avl-tree-node-data br) data)
(if (avl-tree-do-delete cmpfun br 1 data)
(avl-tree-del-balance2 root branch)))
(t
;; Found it. Let's delete it.
(cond
((null (avl-tree-node-right br))
(avl-tree-node-set-branch root branch (avl-tree-node-left br))
t)
((null (avl-tree-node-left br))
(avl-tree-node-set-branch root branch (avl-tree-node-right br))
t)
(t
(if (avl-tree-do-del-internal br 0 br)
(avl-tree-del-balance1 root branch))))))))
;; ----------------------------------------------------------------
;; Entering data
(defun avl-tree-enter-balance1 (node branch)
;; Rebalance a tree and return t if the height of the tree has grown.
(let* ((br (avl-tree-node-branch node branch))
p1 p2 b2 result)
(cond
((< (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
nil)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br +1)
t)
(t
;; Tree has grown => Rebalance.
(setq p1 (avl-tree-node-right br))
(if (> (avl-tree-node-balance p1) 0)
;; Single RR rotation.
(progn
(avl-tree-node-set-right br (avl-tree-node-left p1))
(avl-tree-node-set-left p1 br)
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-branch node branch p1))
;; Double RL rotation.
(setq p2 (avl-tree-node-left p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-left p1 (avl-tree-node-right p2))
(avl-tree-node-set-right p2 p1)
(avl-tree-node-set-right br (avl-tree-node-left p2))
(avl-tree-node-set-left p2 br)
(if (> b2 0)
(avl-tree-node-set-balance br -1)
(avl-tree-node-set-balance br 0))
(if (< b2 0)
(avl-tree-node-set-balance p1 +1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2))
(avl-tree-node-set-balance (avl-tree-node-branch node branch) 0)
nil))))
(defun avl-tree-enter-balance2 (node branch)
;; Return t if the tree has grown.
(let* ((br (avl-tree-node-branch node branch))
p1 p2 b2)
(cond
((> (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br 0)
nil)
((= (avl-tree-node-balance br) 0)
(avl-tree-node-set-balance br -1)
t)
(t
;; Balance was -1 => Rebalance.
(setq p1 (avl-tree-node-left br))
(if (< (avl-tree-node-balance p1) 0)
;; Single LL rotation.
(progn
(avl-tree-node-set-left br (avl-tree-node-right p1))
(avl-tree-node-set-right p1 br)
(avl-tree-node-set-balance br 0)
(avl-tree-node-set-branch node branch p1))
;; Double LR rotation.
(setq p2 (avl-tree-node-right p1)
b2 (avl-tree-node-balance p2))
(avl-tree-node-set-right p1 (avl-tree-node-left p2))
(avl-tree-node-set-left p2 p1)
(avl-tree-node-set-left br (avl-tree-node-right p2))
(avl-tree-node-set-right p2 br)
(if (< b2 0)
(avl-tree-node-set-balance br +1)
(avl-tree-node-set-balance br 0))
(if (> b2 0)
(avl-tree-node-set-balance p1 -1)
(avl-tree-node-set-balance p1 0))
(avl-tree-node-set-branch node branch p2))
(avl-tree-node-set-balance (avl-tree-node-branch node branch) 0)
nil))))
(defun avl-tree-do-enter (cmpfun root branch data)
;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY.
(let ((br (avl-tree-node-branch root branch)))
(cond
((null br)
;; Data not in tree, insert it.
(avl-tree-node-set-branch
root branch (avl-tree-node-create nil nil data 0))
t)
((funcall cmpfun data (avl-tree-node-data br))
(and (avl-tree-do-enter cmpfun br 0 data)
(avl-tree-enter-balance2 root branch)))
((funcall cmpfun (avl-tree-node-data br) data)
(and (avl-tree-do-enter cmpfun br 1 data)
(avl-tree-enter-balance1 root branch)))
(t
(avl-tree-node-set-data br data)
nil))))
;; ----------------------------------------------------------------
(defun avl-tree-mapc (map-function root)
;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
;; The function is applied in-order.
;;
;; Note: MAP-FUNCTION is applied to the node and not to the data itself.
;; INTERNAL USE ONLY.
(let ((node root)
(stack nil)
(go-left t))
(push nil stack)
(while node
(if (and go-left
(avl-tree-node-left node))
;; Do the left subtree first.
(progn
(push node stack)
(setq node (avl-tree-node-left node)))
;; Apply the function...
(funcall map-function node)
;; and do the right subtree.
(if (avl-tree-node-right node)
(setq node (avl-tree-node-right node)
go-left t)
(setq node (pop stack)
go-left nil))))))
(defun avl-tree-do-copy (root)
;; Copy the tree with ROOT as root.
;; Highly recursive. INTERNAL USE ONLY.
(if (null root)
nil
(avl-tree-node-create
(avl-tree-do-copy (avl-tree-node-left root))
(avl-tree-do-copy (avl-tree-node-right root))
(avl-tree-node-data root)
(avl-tree-node-balance root))))
;;; ================================================================
;;; The public functions which operate on AVL trees.
(defun avl-tree-create (compare-function)
"Create an empty avl tree.
COMPARE-FUNCTION is a function which takes two arguments, A and B,
and returns non-nil if A is less than B, and nil otherwise."
(cons 'AVL-TREE
(cons (avl-tree-node-create nil nil nil 0)
compare-function)))
(defun avl-tree-p (obj)
"Return t if OBJ is an avl tree, nil otherwise."
(eq (car-safe obj) 'AVL-TREE))
(defun avl-tree-compare-function (tree)
"Return the comparision function for the avl tree TREE."
(avl-tree-cmpfun tree))
(defun avl-tree-empty (tree)
"Return t if TREE is emtpy, otherwise return nil."
(null (avl-tree-root tree)))
(defun avl-tree-enter (tree data)
"In the avl tree TREE insert DATA.
Return DATA."
(avl-tree-do-enter (avl-tree-cmpfun tree)
(avl-tree-dummyroot tree)
0
data)
data)
(defun avl-tree-delete (tree data)
"From the avl tree TREE, delete DATA.
Return the element in TREE which matched DATA, nil if no element matched."
(avl-tree-do-delete (avl-tree-cmpfun tree)
(avl-tree-dummyroot tree)
0
data))
(defun avl-tree-member (tree data)
"Return the element in the avl tree TREE which matches DATA.
Matching uses the compare function previously specified in `avl-tree-create'
when TREE was created.
If there is no such element in the tree, the value is nil."
(let ((node (avl-tree-root tree))
(compare-function (avl-tree-cmpfun tree))
found)
(while (and node
(not found))
(cond
((funcall compare-function data (avl-tree-node-data node))
(setq node (avl-tree-node-left node)))
((funcall compare-function (avl-tree-node-data node) data)
(setq node (avl-tree-node-right node)))
(t
(setq found t))))
(if node
(avl-tree-node-data node)
nil)))
(defun avl-tree-map (__map-function__ tree)
"Apply MAP-FUNCTION to all elements in the avl tree TREE."
(avl-tree-mapc
(function (lambda (node)
(avl-tree-node-set-data
node (funcall __map-function__
(avl-tree-node-data node)))))
(avl-tree-root tree)))
(defun avl-tree-first (tree)
"Return the first element in TREE, or nil if TREE is empty."
(let ((node (avl-tree-root tree)))
(if node
(progn
(while (avl-tree-node-left node)
(setq node (avl-tree-node-left node)))
(avl-tree-node-data node))
nil)))
(defun avl-tree-last (tree)
"Return the last element in TREE, or nil if TREE is empty."
(let ((node (avl-tree-root tree)))
(if node
(progn
(while (avl-tree-node-right node)
(setq node (avl-tree-node-right node)))
(avl-tree-node-data node))
nil)))
(defun avl-tree-copy (tree)
"Return a copy of the avl tree TREE."
(let ((new-tree (avl-tree-create (avl-tree-cmpfun tree))))
(avl-tree-node-set-left (avl-tree-dummyroot new-tree)
(avl-tree-do-copy (avl-tree-root tree)))
new-tree))
(defun avl-tree-flatten (tree)
"Return a sorted list containing all elements of TREE."
(nreverse
(let ((treelist nil))
(avl-tree-mapc
(function (lambda (node)
(setq treelist (cons (avl-tree-node-data node)
treelist))))
(avl-tree-root tree))
treelist)))
(defun avl-tree-size (tree)
"Return the number of elements in TREE."
(let ((treesize 0))
(avl-tree-mapc
(function (lambda (data)
(setq treesize (1+ treesize))
data))
(avl-tree-root tree))
treesize))
(defun avl-tree-clear (tree)
"Clear the avl tree TREE."
(avl-tree-node-set-left (avl-tree-dummyroot tree) nil))
2007-08-27 01:29:41 +00:00
(provide 'avl-tree)
2007-08-27 01:42:03 +00:00
;; arch-tag: 47e26701-43c9-4222-bd79-739eac6357a9
;;; avl-tree.el ends here